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> Digital technologies and the study of adaptation in small-scale fish-

3 eries

+ Anonimized

5 e We develop and test a new method to deploy behavioral economic ex-
6 periments by leveraging digital media platforms: “digital experiments”
7 e These digital experiments elicit and capture responses that are quali-
8 tatively similar to those recovered through in-person games

0 e Even when players were informed about the risk of an environmental
10 shock at the onset of the experiment, adaptation ensues only after a

1 shock has occurred, and the effect dissipates quickly.



-

2

13

14

15

Digital technologies and the study of adaptation in
small-scale fisheries

Anonimized

Abstract

Economic experiments have led to important advances in our understand-
ing of human adaptation in coupled social-environmental systems. However,
economic experiments may be costly, which limits their scale and even the
external validity of their results. Digital technologies offer great potential
to deploy economic experiments at scale, but this approach remains largely
untested. Here, we evaluate the feasibility of using mobile computing plat-
forms (smartphones, tablets, and computers) to deploy digital economic ex-
periments that collect players’ response to environmental shocks. To do so,
we developed a digital version of a well-studied natural resource harvesting
game characterized by a renewable common-pool resource harvested in re-
peated iterations. We recorded a total of 3,369 interactions with the outreach
material, which led to a total of 740 rounds played; Only 11 players partici-
pated in the baseline and treatment games. We show that players’ behavior
during digital experiments was qualitatively similar to responses observed
during in-person games with fishers reported in the literature. Additionally,
our exploratory analysis suggests that information about the risk of a shock
is not enough to induce adaptation by players, who reduced their harvest

rates only after experiencing a climatic shock.
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1. Introduction

Coastal and inland small-scale fisheries and aquaculture produce half of
the global fish catch and over two-thirds of aquatic food production for human
consumption, providing livelihoods to hundreds of millions of people as well
as critical nutrition to approximately 1 billion people [I]. As with other food
systems, the economic productivity and stability of the wild-caught fisheries
sector is subject to the forces of economic markets and national policies
[2, B]. However, unlike other food systems where humans may control some
inputs, processes, and outputs, the productivity of fisheries remains largely
constrained by the environmental, ecological, and physiological processes [4]
5, 6]

Consider the example of agriculture, where a farmer may select their crop,
when to plant it, how much fertilizer, pesticide, and water to use, and when
to harvest so as to maximize returns. They may also build reservoirs to water
plants in the dry season, and greenhouses to control light, temperature and
humidity, or provide their plants with shade to fight rising temperatures.
Fishers, on the other hand, have little to no control over the factors that
drive somatic growth, natural mortality, per-capita fecundity, reproductive
output, early (larval) development, movement and migration of wild fish [e.g.
water temperature, dissolved oxygen, [7, 8], and food availability [9] [10, 11]].
This inability to control some determinants of a system’s productivity (in

magnitude, space, and time) makes wild-caught fisheries disproportionately
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vulnerable to the adverse consequences of climate change. This is particularly
true for small-scale fishers, who may have limited capital and access to credit
markets that could help them adapt|I2] 13]. Therefore, understanding how
fishers respond to environmental shocks and what triggers their responses is
a priority to ensure sustainability of fisheries, particularly in low and mid-
income nations [14].

One of the main challenges to designing and implementing adaptation-
enhancing policies for small-scale fisheries is their dynamism and diversity in
size, targeted species, composition, identity, and management regimes [14].
Economic experiments—a method from experimental economics—provide effec-
tive frameworks for understanding these complex dynamics and behaviors[15].
Economic experiments are “games” designed to mimic real-life decision-making
incentives under a controlled environment, where the researcher can credibly
introduce an exogenous treatment (e.g. “if a 6-sided dice rolls 1, you lose
50% of your stock”) and, while maintaining everything else constant, elicit
and record a player’s behavioral response (e.g. “I already lost 50% of my
stock, so I shall harvest less (or more?) this round”). These approaches have
been widely used in the literature because they allow testing how different
factors of the game affect decisions and, under certain conditions, may in-
dicate how fishers will respond to similar factors in the real world (See [16]
for an analysis on the role of framing and external validity of games). For
example, Finkbeiner et al. [I7] conducted economic experiments with fishing
cooperatives in Baja California (Mexico) and found that fishers adapted to
environmental uncertainty or illegal fishing—both causing a sudden decline

in the stocks—by voluntarily reducing their catch rates, and that these adap-
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tive responses were stronger in communities where fishers stated trust in
management institutions and secure fishing rights.

These methods have also been used to study trust [16], competition [18],
the role of ecological thresholds associated to catastrophic transitions in
common-pool resource extraction[19, 20], and gender-specific responses [21],
among many other relevant topics that have made important contributions
to the study of social-ecological systems. However, economic experiments
can face three limitations: 1) they require large upfront and continued fi-
nancial resources to gather players and researchers in a room; 2) they often
employ small sample sizes that only represent a small subset of fishers; and
3) the results may be informative only in the specific context of the gaming
experiment, making it difficult to use insights from local processes to inform
general policies [22]. As a result, large sums of money and valuable time
are devoted to learning processes that may not translate outside the context
of the focal community or fishery assessed. Digital technologies promise to
overcome some (or most) of these challenges [23], as they offer untapped po-
tential to cost-effectively reach a larger and more diverse group of fishers,
thereby generating generalizable insights that can be used to inform policy.

Multiple software platforms already allow researchers to implement pre-
existing experiments[24]. However, most rely on players being present in the
lab or classroom, and only offer a limited number of experimental designs.
This has prompted others to highlight that advanced programming is re-
quired for researchers to develop new experiments from the ground-up|24].
Here, we combine digital technologies with common approaches from behav-

ioral and natural resource economics to scale the study of adaptation across
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diverse fishing organizations. We designed a digital version of previously-
tested, in-person, field experiments on behavioral responses to climate change
and used mobile computing platforms (smartphones, tablets) to target fishers
across Mexico.

Our main objective was to evaluate the feasibility of using mobile digital
platforms to deploy economic experiments. People playing a game on their
phone are not exposed to the same social cues as in in-person games, so
their behavior might be different than in the real world. For digital game
experiments to be a suitable substitute for in-person games, they must be
able to overcome at least one of the three limitations stated above (i.e. cost,
sample size, and external validity). We assessed feasibility by addressing the
following two questions: 1) Can we compel enough players to play our dig-
ital experiments? and 2) Can we collect a diverse sample, representative of
different fisheries, environments, and demographics? Moreover, even if the
answers to both questions are positive, we must also show that digital eco-
nomic experiments can elicit and capture the same behaviors and responses
as in-person economic experiments would. Therefore, we also asked: 3) How
do responses captured by digital economic experiments compare to those
observed for equivalent in-person games? Finally, we asked 4) What new in-
sights, with respect to what was previously found, emerge from the analysis
of the digital experiment data?

As we will show, it is difficult to obtain large and diverse sample sizes
of players, and we have no way of verifying that players are in fact fishers.
However, recorded behavioral responses in our modest sample are qualita-

tively similar to those observed in in-person experiments. And finally, we
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find suggestive evidence that-in the context of our game-adaptation only

ensues after a shock is experienced.

2. Methods

Our methods section is divided into two main parts. The first one focuses
on our experimental design and approach to data collection. We begin with
a description of the original experiment and its adaptation to the digital
context. We then provide a brief description of the software development
component of our project, as well as the use of social media to broadcast our
game and track user engagement. The second part then focuses on the data
analyses, which relate to our four main objectives. We first outline how we
measured game engagement, we then present methods used to validate our
responses, and then we introduce a new analysis where we study the timing

of adaptation in relation to knowledge about and realization of shocks.

2.1. Experimental design and data collection

2.1.1. The digital economic experiment

We develop our first digital economic experiment with the objective of
studying players’ behavioral responses to climate change and, specifically,
climatic shocks causing massive mortality of a target stock (sensu [25] 26,
27, 28]). This choice is grounded in two reasons. First, the adverse effects
of climate change are one of the most pressing issues faced by fishing com-
munities today [14]. Second, we want to investigate whether the results of
game experiments conducted using digital technology are comparable to the

results of the same experiments previously conducted in person. To this
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end, we replicate the dynamics of an in-person game experiment originally
designed and conducted by Finkbeiner et al.[I7] in Baja California (Mexico).

The original in-person game simulated a common-pool resource harvested
by five fishers over 15 rounds. The stock available to these players in period
t depended on extraction decisions in period ¢t — 1. Overall, 180 fishers
from six fishing communities participated in their game. The experimen-
tal treatments relevant to our exercise were designed to test for changes in
fishing behavior under factorial combinations of environmental uncertainty
(climatic shock) and communication. In each round, fishers were presented
with the stock size ranging between 0 and 100. Fishers could then choose
a harvest level, up to 5 resource units each per round. After total harvests
were tallied, the escapement (i.e. stock size minus total harvests) grew at
a constant 10% rate for next round’s stock size (up to maximum stock size
of 100 units). Environmental uncertainty was introduced through a 10%
chance of losing 50% of the total escapement each round, and communica-
tion was introduced by allowing fishers to discuss non-binding agreements
on individual and aggregate-level catch. The game also included a baseline
treatment of no environmental uncertainty and no communication. Fishers
were paid to participate in the game, and the payouts were designed to com-
pensate for wages earned on an average day’s fishing. The experiments only
allowed fishers to adapt by modifying their harvesting behavior, a common
form of adaptation in small-scale fisheries|[29]. However, we recognize that
adaptation is multidimensional, and fishers may respond to environmental
uncertainty by changing the timing and location of their fishing, target a

different portfolio of species, rely on other financial sources, and even exit
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the fishery|[25] 27, 29| 30].

Our digital experiments introduce three modifications to the original
game. First, we restrict our implementation to two treatments: a baseline
treatment without environmental uncertainty and a main treatment of inter-
est with environmental uncertainty. We used the same parameters as Ref.
[17], because we are interested in comparing the responses between in-person
and digital experiments. We also note that the 50% reduction is well within
the reductions observed in biomass, richness, and catch of Mexican small-
scale fisheries exposed to marine heatwaves |28 31], [32]. We do not incorpo-
rate a communication treatment because this would require computationally
expensive peer-to-peer connections. Regardless, each player still harvests a
common-pool resource and interacts with four pre-programmed virtual play-
ers, hereinafter also referred to as bots. The bots are programmed follow-
ing real human decisions and parameters published by [17]| for each treat-
ment (See [Appendix A)). This parameterization allows for random round-
and treatment-specific variations in harvest levels that replicate previously
observed behavior, without the need for peer-to-peer connections. Finally,
our game does not include any financial compensation or incentives because
part of our objective is to see whether the game can reduce the costs of de-
ploying experiments while simultaneously increasing sample size and external
validity (but see [33] for a discussion on response rates and monetary incen-

tives). Mathematical equations governing game dynamics and pseudo-code

are provided in [Appendix A]
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2.1.2. Development of the digital platform

The digital experiment uses a web-based platform, which we developed
under the ShinyApps framework in R and RStudio [34], 35]. This provides a
simple way to run R code in a remote server accessed through an HTML front-
end. The digital platform, called “La Pesca Cambiante” (i.e., The Changing
Fishery) is available onlindﬂ; the source code is openly accessible on GitHubﬂ.
We assumed most players would access the game on their phones or tablets,
so we developed the user interface with a portrait orientation.

Upon entering the app, users are presented with a brief optional survey
asking whether they are fishers, and other demographic information
ure 1p). They are then presented with instructions on how to interact with
the controls (Figure 1p). The main screen (Figure 1f) is designed to repli-
cate the information available to players during the original treatments of
the game implemented by [17].

We optimized the user interface by holding two focus groups where players
tested the digital platform before releasing it to the public. The first one with
personnel from the civil society organization Comunidad y Biodiversidad,
A.C. (COBI; n = 5 players) and the second with members of a small-scale
fishing cooperative in El Rosario, Mexico (n = 5 players). These helped
us develop, refine, and finalize the user interface for the digital economic
experiment, but no changes were made to the underlying game dynamics.

Throughout the game, players could observe the total stock size with the

number of specimens in the fishing ground and a numeric badge indicating

Thttps://innovacionazul.shinyapps.io/PescaCambiante
Zhttps://github.com /jevdav/FishCatchR,
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current population size (Figure 1¢). One of three species of commercial
interest (crab, shrimp, and finfish) was randomly selected at the beginning
of each round to ensure a random and diverse representation of the resources
commonly targeted by players. Players could also observe the total catch
by the entire group, their own previous catch, and a counter (from 0 to 15)
showing the current round number. A slider allows players to select their
catch each round (0-5, or maximum population size) and a button allows
players to submit their harvesting intentions. When the baseline treatment

was completed (Figure 1d) and players indicated to play the next game, they

were presented with pop-up notification of environmental uncertainty and

the game’s color scheme was modified (Figure 1g).
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¢Eres pescador?

Seleccionar...

Rango de edad:
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Selecionar...

Regién:

Seleccionar...

10 digitos de tu teléfono:

X-XXX-XX-XX

Siguiente P
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Ventana2/2
Reglas del juego:
1) El juego tiene dos mundos. El primero es.
azuly el segundo rojo
2) Vas a jugar contra otros 4 pescadores
3) Cada juego tiene 15 viajes de pesca
4) Puedes pescar entre 0 y 5 peces en cada
viaje
Coémo jugar:
Tu objetivo es pescar lo mas que puedas,
pero sin acabarte el recurso.
En la siguiente pantalla, selecciona el nimero

de peces que quieres pescar, y después usa
el botén de 'PESCAR!"

Jugar P

La Pesca Cambiante

Poblacién: 100 @ Viaje: 1de 15

Elige tu captura para este vi...

0 1 2 3 4 5

iTerminaste el juego!
¢Quieres volver a jugar?

Cancel OK

® ALerTA!

Hay cambio climatico
En uno de cada diez viajes puede haber ondas
de calor que matan a la mitad del recurso
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235 Entre todos capturaron: 0
Poblacién: 100 O Viaje: 1de 15

Elige tu captura para este vi...

0 1 2 3 4 5

PESCAR!

Figure 1: Five screenshots of the digital application. Panel a shows the welcome
screen, with the brief optional survey. Panel b shows the instructions given to players.
Panel ¢ shows the baseline playground, with four informational badges. Panel d shows
the end-of-game message and an option to advance to the next game (treatment). Panel e
shows the playground for the environmental uncertainty treatment, along with the pop-up
notification. Note the change in color scheme between treatments (from blue in c-d to red

in e).
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2.1.3. Communication and outreach

Testing our ability to recruit players into the game was one of our research
questions. Accordingly, we used two approaches to reach out to potential
players. First, we wrote a blog post (in SpaniShED where we introduced the
project, the objectives, and the game. The blog post contained an invitation
and link to play the app. The blog post was shared through the networks (i.e.,
Facebook, web site, and ad hoc WhatsApp groups) owned by PescaData, a
digital logbook app for small-scale fishers. We used short video clips with
a demonstration of the game (Supplementary materials Video 1 and Video
2). Second, we posted a Facebook message also on COBI’s account with a
link to the game. We leveraged these social media platforms because they
are actively used by PescaData and COBI, which allowed us to connect with
their followers.

We used Facebook’s sponsoring service to promote our post four times,
for 10, 13, 8, and 16 days, at the costs of $1000 MXN, $1200 MXN, $400
MXN, and $1200 MXN each, respectively. The total investment was $3800
MXN, or around $200 USD in 2024. We used Facebook analytics to count
the number of times people clicked on the posts’ links, and to collect basic
demographic information like self-reported gender identity, age, and location.
We also tracked the number of interactions with the blog post, with the link
that took readers to the game, and the extent to which users interacted
with the game (e.g., access, access and play one round, access and play two

rounds).

3See: https://pescadata.org/la-pesca-cambiante/
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2.1.4. Tracking engagement and behavioral responses

For each player’s interaction with the game, we gathered data on: type
of treatment, number of the fishing round, population size, individual har-
vest, aggregate harvest, escapement, and indicators for catastrophic mor-
tality (when applicable), as well as the data gathered in the optional sur-
vey (Figure 1]A). This data, stored in a Google spreadsheet with a unique
(anonymized) identifier, is comparable to the one generated by the original

in-person game experiments, with which we will compare our results.

2.2. Data analysis

2.2.1. Sample acquisition rates

We first performed a survival analysis to derive the proportion of players
that made it from one stage to the next. We counted the number of interac-
tions at each of the following stages: Social media post, blog post, entering
the game, playing at least one treatment in the game (i.e., baseline), and
playing at least two treatments in the game (i.e., baseline and environmen-
tal uncertainty). We calculated the proportion of interactions flowing from
one step to the other, and also generated an overall survival matrix to show

pairwise comparisons of proportions of players between these stages.

2.2.2. Measuring behavioral responses

We followed a similar approach to [I7] and tested for changes in harvest
behavior between treatments. The original in-person analysis used average
group catch as a fraction of maximum catch as the response variable. Here,
since only one player per game is human (the other four being bots), we use

player-level catch as a fraction of maximum player-level allowable catch for

13
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each round as our response variable. We are interested in two parameters:
1) the slope of catch over time and 2) the difference in catch rates across
treatment status. We estimate these parameters of interest using a linear

regression of the form:

Yijt = Boly + B1D; + pR; + €4 (1)

where y; ;; is the catch rate of player ¢ from region j, at round ¢, 3
captures the change in catch rate through rounds (7}), and /3 captures the
change in catch rate when player ¢ faces the environmental uncertainty treat-
ment (i.e., D; = 1). We include fixed-effects by region R; captured by vector
p, and implement Driscoll-Kraay standard-errors [36]. Note that we only
analyze responses by human players, never by bots. We also perform robust-
ness tests restricting the sample to sessions where the players played both
the baseline and treatment rounds, and when they only played the base-
line round. All regressions were performed using the fixest package (v0.12.1;
[37]), running in R version 4.4.2 (2024-10-31) via 2025.05.0 Build 496 [35].
Regression tables were produced with the modelsummary package version

2.2.0 [38], while figures were produced with ggplot2 version 3.5.2 [39].

2.2.8. Validation of behavioral responses

Finkbeiner [17] showed that when fishers became aware of environmen-
tal uncertainty, they reduced their catch rates; this behavioral response was
more pronounced for those who perceived to have been more exposed to en-
vironmental change in the real world. But do they adapt as soon as they
are informed about the possibility of an environmental shock that may cause

catastrophic mortality in the exploited stock, or only once they have actually

14
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experienced an environmental shock? We address this question by running
two tests. First, we test whether the catch trend of players that are informed
about the risk of an environmental shock but have not experienced it yet
differs from the catch trend the first time they play the game with no en-
vironmental uncertainty. To do so, we estimate the same model as before,
but restrict the sample to all rounds leading up to, but not including, the
round in which the first shock ensued. Thus, this sample only contains activ-
ity where players were aware of the environmental uncertainty but they had
not yet experienced it in the game. A f3; different from zero would indicate
that knowledge of environmental uncertainty alone is enough to induce an
anticipatory behavioral change. Specifically, a reduction in catch rates if Bl
< 0, whereas an increase in catch rates if Bl > 0.

Then, we asked whether catch rates right after players experience an
environmental shock for the first time differ from catch rates of the same
players right before they experience an environment shock. We answer this
question by extending the analysis under an event-study framework, where
we look at player-level changes in behavior immediately before and after the
shock is delivered. This allows us to assess if and how behavior changes
after a shock, rather than information about a potential shock. Here, the

estimating equation takes the following form:

Vit = Bl + a1 Pre; + asPost; + w + T + €5 (2)

Where y;; is still our response variable measuring the catch rate of player
7 at time ¢, B; estimates a vector of dynamic treatment effects corresponding

with time-to-treatment as indicated by the vector of dummy variables T;

15



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

(between -5 and 5). Coeflicients a7 and ay estimate the effect of dummy
variables that aggregate the effect of observations more than 5 rounds before
(Pre;) and after (Post;) from the time of treatment. Finally, w and 7 are
unit- and time-fixed effects. Our supplementary materials include a series
of robustness tests where we estimate the same model without o and as
and expanding T} to the full range of the data, or where we use the robust

two-way fixed-effect estimator proposed by Ref. [40].

3. Results

3.1. Summary statistics of user interactions

Web analytics data show large engagement in all states throughout Mex-
ico, with a total of 3,369 clicks on the link taking viewers to the blog post
(Figure 2h). The largest number of social media interactions with the so-
cial media posts were recorded for the state of Sonora (657 interactions),
one of Mexico’s most important states in terms of fisheries production. Ve-
racruz, Baja California, Chiapas, and Yucatéan round out the top-five states
with large engagement numbers of 592, 491, 490, and 469, respectively. The
bottom-five states were Aguascalientes (22), Querétaro (28), Tlaxcala (37),
Nuevo Leon (48), and Baja California Sur (56) (note that the bottom four
are all landlocked states or states where fisheries are not a primary economic
activity). There were 14 (0.38%) instances where the state could not be iden-
tified. Demographic data suggests that the posts receive the most interaction
from men, especially those between 25 and 45 years of age ) The
female modal age was lower, with 18-34 years of age being the largest group

presented in the data.
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Traffic analytics data show that 55 people accessed the game. Of these,
21 completed at least the first game and 11 played more than one game. Most
players did not report themselves as fishers. These interactions result in a
total of 740 rounds played across both treatments (N = 310 baseline, N = 430
uncertainty). shows a survival matrix and the cumulative growth in
the number of unique users with respect to each post. Note that promotion
of social media posts often resulted in corresponding increases in interac-
tions with the game, suggesting broad promotion could be a mechanism for
increasing engagement. These data suggest an end-to-end player acquisition
rate (also termed “click-through rate”) of 0.43%, at a cost of $345MXN (about
$18 USD) for each of our 11 players.
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Figure 2: Map of interactions with the Facebook posts. Land polygons show states
in Mexico, and they are colored based on the number of interactions received in blog posts.
Polygons over the ocean show Mexico’s five fishing regions and are colored based on the

number of players from each. Gray polygons indicate no samples.
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Figure 3: Bottlenecks in user interaction and sample acquisition. Panel a shows
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them show the amount of interactions. Panel b shows the total number of sessions where
the user filled-in the survey and started the game, where at least the baseline game was
played, and where the player played the baseline and uncertainty games. The dashed

vertical lines indicate dates in which social media posts were posted.
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3.2. Validation of behavioral responses

Time series of player behavior and stock size for digital experiments as
well as previous data from Finkbeiner et al [17] are shown in[Figure 4] It is vi-
sually evident that catch rates decrease through time in all cases )
These visual insights are corroborated by regression analysis of the digital ex-
periment data, where we find that catch rates decrease significantly through
time (8o = —0.009; p < 0.01) and that, when faced with environmental uncer-
tainty, players significantly reduce their catch rates (Bl = —0.094;p < 0.01).
The estimate for change in catch rates through time is equivalent to that re-
ported by Finkbeiner et al[17] (at -0.012). However, our estimate of the effect
of environmental uncertainty indicates a stronger response by players, rela-
tive to what in-person experiments recorded (-0.06). Restricting the sample
only to players that played both games yields a 8, = —0.008(p < 0.05)
and Bl = —0.106(p < 0.01), while looking at the change in catch rate
through time for those who only played the baseline treatment we find
Bo = —0.01(p < 0.01). shows coefficient estimates compared to
those estimated from in-person experiments [17], and shows model
summary statistics; both also show results for different subsamples as robust-

ness tests.
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Figure 4: Comparison of state variables in the original experiments by
Finkbeiner et al [17] and the digital experiments. Panel a shows change in harvest
rates through time, and panel b shows change in population size through time. Dashed
lines represent data from original in-person experiment (baseline treatment only) and solid

lines indicate data from digital experiments performed here. Colors indicate the treatment.
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Figure 5: Coeflicient estimates retrieved from digital experiments. The left panel
shows the coefficient on time (i.e., ﬁo) and the right panel shows the coefficient on en-
vironmental uncertainty (i.e., 31) Points show coefficient estimates, the blue portion of
the error bars shows standard errors, and the black portion of the error bar shows 95%
confidence intervals. We provide estimates for the full sample and two sub-samples as
robustness checks (in one we retain only those who participate in both baseline and envi-
ronmental uncertainty treatments, and in other one we limit it to baseline estimates only,
when relevant). The solid horizontal line indicates zero, and the dashed horizontal line
indicates the central estimates from Finkbeiner et al, [I7]. Note the different y-axis scales

between plots.
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Table 1: Coefficient estimates for the effect of game round
and environmental uncertainty on catch rate. Panel
A shows summary statistics associated with the validation
results plotted in Fig 5. Panel B shows results for testing

for the effect of information alone.

Full Both treatments Baseline only

Panel A) Validation analysis

Round -0.009%** -0.008** -0.010%**
(0.003) (0.004) (0.003)
Env. Uncertainty -0.094*** -0.106***
(0.020) (0.022)
Num.Obs. 740 590 150

Panel B) Information only

Round -0.007** -0.005 -0.010%***
(0.003) (0.004) (0.003)
Env. Uncertainty -0.030 -0.030
(0.029) (0.034)
Num.Obs. 522 372 150

*p <0.1, ** p <0.05, *** p <0.01
Each column represents results for a different sample. Each panel
represents a different test. Numbers in parentheses are Driscol-

Kraay Standard errors. All specifications include fixed-effects by

region.
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3.8. Assessing the effects of shocks on behavioral responses

A novel preliminary insight from our analysis is that information about
environmental uncertainty alone (i.e., the possibility that an environmental
shock will significantly reduce future stock size) does not induce a behavioral
response in players that have not experienced yet an environmental shock.
When restricting the sample to observations that occur before any shocks,
we find no significant treatment effects (8, = —0.030;p = 0.3; [Table 1B).
This suggests that adaptation occurs only after players experience their first
shock, which we corroborate with an analysis of dynamic effects. We find
that all coefficients leading to the impact are not significantly different from
zero ([Figure 6)). Then, after players experience an environmental shock, they

reduce their catch rates by more than 0.13, on average, for at least two consec-

utive rounds (p < 0.05; See|Figure 6{and [Table B.1)). Their catch rates remain

lower than before the shock, though not significantly so for all five rounds
(Figure 6f). The coefficients on the dummy variables indicating observations
that occur outside the 5-day window considered in the dynamic effects are
also consistent, with no significant differences before (a; = 0.021;p = 0.58),
and significantly negative differences after (a; = —0.158;p < 0.1; see
ble B.1)). The dynamic treatment effects are also robust to other linear re-

gression specifications and to estimators specifically designed for staggered

treatment adoption and repeated treatments (See [Figure B.1)).
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Figure 6: Event-study plot for change in catch rate relative to time of the shock.
Points show coefficient estimates (relative to the round in which the shock was delivered),
the blue portion of the error bars shows standard errors, and the black portion of the error
bar shows 95% confidence intervals. Recall that the shock is delivered at the end of the
round. The figure shows no significant changes in catch rates for the 5 rounds leading
to the shock, and a significant decrease in catch rates (i.e., adaptation) once a shock has

been realized. The effect lasts for two rounds after the shock (p < 0.05).
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4. Discussion and Conclusions

Our objective was to explore the potential use of digital economic exper-
iments as a way to scale-up the study of adaptation in small-scale fisheries.
We asked whether we could recruit enough participants, and whether their
responses could be compared with those reported by similar in-person exper-
iments. We found that it costs around $18 USD to recruit each participant,
although we could not guarantee all players were fishers or that they would
play all games. Despite our small sample, digital and in-person experiments
produced similar patterns: catch declined over time and fell further under
shock uncertainty [I7]. Other experiments focusing on fishing behavior in
the presence of ecological thresholds with tipping-points—e.g., reproductive
failure when spawner density drops below a give threshold—also found that
fishers fished less when facing critical ecological thresholds, relative to base-
line treatments without thresholds [19).

Our analysis also revealed that information of environmental uncertainty
alone is not enough to induce a behavioral change. Instead, players reduced
their harvest only after they had actually experienced a shock. Adaptation
was brief and lasted for only two rounds. We must emphasize that these find-
ings come from a very limited sample size and should be taken as preliminary
rather than definitive.

Exit interviews with players conducted by Finkbeiner et al[I7] had high-
lighted that previous experience with an environmental shock was a correlate
of voluntary catch reduction in this previous experiment. Our digital exper-
iment and analysis presented here supports this hypothesized effect, thereby

providing an explanatory mechanism for variable adaptive responses across
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communities, and an expectation that adaptive responses may increase as the
occurrence of extreme events escalate under climate change scenarios [29]. In
the following lines we expand on each of these points, provide caveats related

to our analysis and lessons learned, and provide concluding remarks.

4.1. Recruitment

We documented more than 3,000 interactions with our social media posts,
but these only resulted in 21 people engaging in gameplay (with only 11
playing treatment and control games). This suggests a 0.43% conversion
rate, which could limit scalability. In monetary terms, this is equivalent to
around $18 USD per player. Attaining a sample size comparable to that
of Finkbeiner [I7] (N = 180) would require an investment of around $3,300
USD. Importantly, even with that level of investment, we would not be able
of guaranteeing that all players are fishers, or that players will complete all
games.

The link between reading a media post and clicking on the button that de-
ployed the game was the largest bottleneck in the sample acquisition pipeline,
suggesting the largest marginal gains can be made here. To overcome the
challenge of the observed large drop between interaction with the platform
and engagement through the game, future efforts could consider incentiviz-
ing potential users to engage with the game by offering a reward or other
incentives [33), 4], [42]. We decided against it because fulfilling the reward
is logistically difficult (players from anywhere in Mexico could play), and
because we were explicitly interested in testing for the feasibility of digital
experiments in its simplest form: a link to the game, and an invitation to

play. Future efforts should balance the costs of incentivizing participation
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versus paying for promotion of social media posts or expanding the initial
pool of potential players. Alternatively, longer promotional campaigns and
increased media activity and exposure may suffice to generate larger sam-
ple sizes. Formally assessing the feasibility and efficacy of these different
approaches to increasing engagement is a critical next step before digital
platforms can be broadly used for addressing research questions of adaptive

responses to environmental uncertainty and other shocks.

4.2. Validity

Although our sample size is small, we find general agreement with pre-
vious behavioral economic field experiments by Finkbeiner et al. [I7]. This
suggests that, if the sample collection and player identity hurdles can be over-
come, digital economic experiments may provide a scalable solution to study
adaptation in small-scale fisheries. Although we found similar results, our
estimates of treatment effect of environmental uncertainty indicate a larger
reduction in catch rates than that reported for in-person experiments. There
are a few potential explanations for this.

First, our sample size and composition may limit our ability to retrieve the
true parameter implying our estimates may be biased. Second, the difference
arises purely due to the game being played online, rather than in-person.
These could be because people enjoy full anonymity in the digital games,
or because the in-person games provide the opportunity for non-verbal cues
and body language to still play a role. A third option is that the monetary
incentives in the field enhance the relative payoffs from immediate extractions
in the game under the uncertainty of a sudden stock reduction. A final option

is that fishers playing the game have had time to learn to adapt to climate
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change since the original experiments by Finkbeiner et al. [17](back in 2015),
for example through the prolonged and extreme marine heat wave that has
affected the region starting in 2014 and through 2016 [27]. Based on our
result that direct experience with an environmental shock significantly affects
behavior, we believe the most likely explanation is that most fishers have now
been exposed to some of the adverse effects of climate change, and that they
have internalized adaptation routes [43]. This is also consistent with previous
research on strength of adaptive responses as it relates to historical exposure

to climatic events [29].

4.8. Implications

Our results show that digital platforms hold potential to scale up the
study of adaptation in small-scale fisheries, although we note some draw-
backs persist. Working through these drawbacks could provide decision mak-
ers, civil society organizations and academic researchers a relatively cheap,
fast, and scalable solution to deploy experiments investigating adaptation to
ongoing shocks, and test the outcomes of new policies before they are imple-
mented. We encourage others to work towards overcoming these drawbacks
and to expand on our analysis, including testing for external validity and
sampling representation.

We also found that, even when players were provided with information
on the potential of a shock, they did not adapt until the shock had occurred.
This finding is derived from a small sample size, but could be cause for
concern because many fishery managers, politicians, and environmental sci-
entists often rely on “environmental outreach” or “science communication” as

strategies to induce behavioral change. This finding may have implications
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beyond fishers, and raises an intriguing area of research about the role of
individual experience in adaptation and behavioral modification. This also
opens up the possibility to explore whether and how different ways of com-
municating the potential of a shock may induce a behavioral response. Our
preliminary findings provide support to the argument that we need to pay
attention to the cognitive biases and limitations that affect humans when
making complex decisions [44] where, in our context, they must face the
problem of cooperation with other fishers while solving the challenge of an-
ticipating future shocks that can affect payoffs in the future. Moreover, the
games themselves might be explored as tools for creating experiences with
environmental change and uncertainty, and their potential use for awareness
and engagement of key actors as well as the general public could be further

investigated.

4.4. Other limitations

The ShinyApps framework provides sufficient control over the develop-
ment of the web-based platform that we used to deploy the games. This
provides an advantage over pre-designed and pre-programmed games [24]
because it allows the experimenter to design new treatments. The frame-
work has been used in academia to build a large sample of solutions-oriented
web-based apps, from evaluating community-based marine reserves [45] or
simulating potential effects of subsidy reforms [46]. However, we recognize
that the approach has some limitations, which may become increasingly rel-
evant for other studies. First, there is a barrier to entry in learning how
to write the R scripts that control the user interface and the back-end of

the game. Fortunately, others have developed valuable guidelines and best-
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practices to inform the use of ShinyApps in academic research [47, 48], which
provide useful insights to those interested in implementing this approach.

Another limitation is that the game does not allow for peer-to-peer con-
nections where players may play against or in coordination with each other,
instead of with the pre-programmed virtual fishers. This is an important
point, as it is crucial that experiments replicate the social dynamics of
decision-making that may arise in the real world. Although we note that the
limitation could be bypassed by hosting the platform on private servers rather
than on those provided by shinyapps.io services, which employ ephemeral
connections to make computation more efficient and accessible. We further
note that a way to work around both of these limitations is for research
teams to engage with professional software developers, who have the knowl-
edge and expertise required to build the right tool. This is something we are
considering, though we note that it could raise costs.

This last point highlights the role of costs, and it is important to mention
factors not included in our cost estimates. We do not account for the costs of
developing the app and hosting it on a server, or the costs of performing the
focus groups. We believe these could be considered as fixed costs, which may
be comparable to the time end effort required to design any game, regardless
of its delivery method. Similarly, we do not account for the costs incurred by
players accessing the platform on wireless cell phone data plans, rather than
via WiFi. This means players may be incurring some costs when engaging
with us, in contrast with in-person games where participants are compensated
for their time [33] 41} 42]. This raises important considerations around the

equity implications of research using digital experiments. Future researchers
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may consider including compensations that are enough to replicate incentives
and that also compensate players for their time and any other costs incurred.

Performing digital experiments also limits our capacity to enforce inter-
actions during the experiment. For example, we could not guarantee that all
players were fishers or that the rounds came to completion. These limitations
resulted in a truncated sample that could not be attributed to fishers with
100% certainty. In turn, this limited our ability to make statistical inference.
While our general results are in alignment with previous findings [17] and
were robust to a series of other tests and specifications (See supplementary
materials), we must emphasize that our estimates of behavioral responses
are derived from only 740 rounds played, which come from a small number
of users who played both games (N = 11 here vs. N = 180 in the in-person

games), and that not all users self-reported as fishers.

4.5. Conclusions

Our feasibility tests suggest that digital experiments may be able to cap-
ture similar behavior as in-person games, and that information about uncer-
tainty alone is not enough to induce a behavioral change in fishers: adapta-
tion likely ensues once the threat has materialized. However, we note that
our small sample precludes us from generalizing our findings.

Digital economic experiments may one day provide a feasible, cost-effective,
and scalable alternative to studying adaptation in small-scale fisheries. How-
ever, implementation of digital experiments may not be as straightforward as
initially thought. We must pay spatial attention to who participates in the
game to ensure only fishers are being studied, account for self-selection bias,

and secure large-enough sample sizes that allow for appropriate statistical
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power. Similarly, we must be conscious of costs being passed on to the com-

munities, and consider approaches to mitigating this. We encourage other

researchers to study how digital technologies may help large-scale deploy-

ments of digital economic experiments to further the study of adaptation.
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o Appendix A. Supplementary text

7

iy

711 Pseudo-code and mathematical representation of the game experiment
712 The timing of events is the following:
713 1. The user observes IV;, total stock size in round ¢

714 2. User i choses a catch level (0-5) for round t, given by: h;;. This is their

715 choice variable, and what we will use as a response variable.

716 3. Bots are also pre-programmed to fish as a function of round and treat-

77 ment status, so we must account for their catch. Total catch at time ¢

718 is simply the sum of everyone’s catch, given by: H;, = 2?21 hi ¢

719 4. We can then calculate escapement at time t as: E; = N, — H;.

720 5. The resource then grows according to the following equation of motion:
Neyr = (L+7)Epp(l — ) (A1)

721 Where:

722 e 7 is the resource’s intrinsic growth rate, with a constant value of

723 (7“ = 0.1)

724 e If the player is playing the environmental uncertainty treatment,

725 then: ~; is the environmental variation parameter, drawn from a

726 log-normal distribution such that: 7; Inorm(1,0.1)

727 6. p is the mortality rate under a shock at time t. It takes a value of 0 in

728 the absence of a shock, or 0.5 otherwise.item The app shows the user

720 the resulting population size (IV; + 1), and we begin at point 1 again.
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720 Appendix B. Supplementary figures and tables
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Figure B.1: Alternative specifications and estimators applied to the event-study
analysis. The x-axis shows the number of rounds leading to and after the treatment.
Points show coeflicient estimates. Each color corresponds to a different estimation strategy.
Our main-text results for dynamic effects (limited to +5 rounds) are similar to those
estimated with data from all rounds and drop the pre- and post- dummy variables, and

when we use the Ref. [40] estimator for staggered treatment adoption.
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Table B.1: Coefficient esti-

mates for event

study
(1)

Est. S.E.
pre 0.021 0.038
post —0.158%*  0.066
ttt = -5 —0.004  0.045
ttt = -4 0.018 0.057
ttt = -3 —0.001  0.085
ttt = -2 0.030 0.038
ttt = -1 0.063 0.046
ttt =1 —0.138%* 0.049
ttt = 2 —0.137**  0.050
ttt = 3 —0.102  0.061
ttt =4 —0.060  0.046
ttt =5 —0.084  0.056

Num.Obs. 520

*p <0.1, ** p <0.05, *** p
<0.01

ttt indicates "time-to-
treatment’,  with negative
values occurring before shock

and  positivgy values after

shock.
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