
Highlights1

Digital technologies and the study of adaptation in small-scale fish-2
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• We develop and test a new method to deploy behavioral economic ex-5

periments by leveraging digital media platforms: “digital experiments”6

• These digital experiments elicit and capture responses that are quali-7

tatively similar to those recovered through in-person games8

• Even when players were informed about the risk of an environmental9

shock at the onset of the experiment, adaptation ensues only after a10

shock has occurred, and the effect dissipates quickly.11
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Anonimized14

Abstract15

Economic experiments have led to important advances in our understand-

ing of human adaptation in coupled social-environmental systems. However,

economic experiments may be costly, which limits their scale and even the

external validity of their results. Digital technologies offer great potential

to deploy economic experiments at scale, but this approach remains largely

untested. Here, we evaluate the feasibility of using mobile computing plat-

forms (smartphones, tablets, and computers) to deploy digital economic ex-

periments that collect players’ response to environmental shocks. To do so,

we developed a digital version of a well-studied natural resource harvesting

game characterized by a renewable common-pool resource harvested in re-

peated iterations. We recorded a total of 3,369 interactions with the outreach

material, which led to a total of 740 rounds played; Only 11 players partici-

pated in the baseline and treatment games. We show that players’ behavior

during digital experiments was qualitatively similar to responses observed

during in-person games with fishers reported in the literature. Additionally,

our exploratory analysis suggests that information about the risk of a shock

is not enough to induce adaptation by players, who reduced their harvest

rates only after experiencing a climatic shock.
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1. Introduction18

Coastal and inland small-scale fisheries and aquaculture produce half of19

the global fish catch and over two-thirds of aquatic food production for human20

consumption, providing livelihoods to hundreds of millions of people as well21

as critical nutrition to approximately 1 billion people [1]. As with other food22

systems, the economic productivity and stability of the wild-caught fisheries23

sector is subject to the forces of economic markets and national policies24

[2, 3]. However, unlike other food systems where humans may control some25

inputs, processes, and outputs, the productivity of fisheries remains largely26

constrained by the environmental, ecological, and physiological processes [4,27

5, 6].28

Consider the example of agriculture, where a farmer may select their crop,29

when to plant it, how much fertilizer, pesticide, and water to use, and when30

to harvest so as to maximize returns. They may also build reservoirs to water31

plants in the dry season, and greenhouses to control light, temperature and32

humidity, or provide their plants with shade to fight rising temperatures.33

Fishers, on the other hand, have little to no control over the factors that34

drive somatic growth, natural mortality, per-capita fecundity, reproductive35

output, early (larval) development, movement and migration of wild fish [e.g.36

water temperature, dissolved oxygen, [7, 8], and food availability [9, 10, 11]].37

This inability to control some determinants of a system’s productivity (in38

magnitude, space, and time) makes wild-caught fisheries disproportionately39
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vulnerable to the adverse consequences of climate change. This is particularly40

true for small-scale fishers, who may have limited capital and access to credit41

markets that could help them adapt[12, 13]. Therefore, understanding how42

fishers respond to environmental shocks and what triggers their responses is43

a priority to ensure sustainability of fisheries, particularly in low and mid-44

income nations [14].45

One of the main challenges to designing and implementing adaptation-46

enhancing policies for small-scale fisheries is their dynamism and diversity in47

size, targeted species, composition, identity, and management regimes [14].48

Economic experiments–a method from experimental economics–provide effec-49

tive frameworks for understanding these complex dynamics and behaviors[15].50

Economic experiments are “games” designed to mimic real-life decision-making51

incentives under a controlled environment, where the researcher can credibly52

introduce an exogenous treatment (e.g. “if a 6-sided dice rolls 1, you lose53

50% of your stock”) and, while maintaining everything else constant, elicit54

and record a player’s behavioral response (e.g. “I already lost 50% of my55

stock, so I shall harvest less (or more?) this round”). These approaches have56

been widely used in the literature because they allow testing how different57

factors of the game affect decisions and, under certain conditions, may in-58

dicate how fishers will respond to similar factors in the real world (See [16]59

for an analysis on the role of framing and external validity of games). For60

example, Finkbeiner et al. [17] conducted economic experiments with fishing61

cooperatives in Baja California (Mexico) and found that fishers adapted to62

environmental uncertainty or illegal fishing–both causing a sudden decline63

in the stocks–by voluntarily reducing their catch rates, and that these adap-64
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tive responses were stronger in communities where fishers stated trust in65

management institutions and secure fishing rights.66

These methods have also been used to study trust [16], competition [18],67

the role of ecological thresholds associated to catastrophic transitions in68

common-pool resource extraction[19, 20], and gender-specific responses [21],69

among many other relevant topics that have made important contributions70

to the study of social-ecological systems. However, economic experiments71

can face three limitations: 1) they require large upfront and continued fi-72

nancial resources to gather players and researchers in a room; 2) they often73

employ small sample sizes that only represent a small subset of fishers; and74

3) the results may be informative only in the specific context of the gaming75

experiment, making it difficult to use insights from local processes to inform76

general policies [22]. As a result, large sums of money and valuable time77

are devoted to learning processes that may not translate outside the context78

of the focal community or fishery assessed. Digital technologies promise to79

overcome some (or most) of these challenges [23], as they offer untapped po-80

tential to cost-effectively reach a larger and more diverse group of fishers,81

thereby generating generalizable insights that can be used to inform policy.82

Multiple software platforms already allow researchers to implement pre-83

existing experiments[24]. However, most rely on players being present in the84

lab or classroom, and only offer a limited number of experimental designs.85

This has prompted others to highlight that advanced programming is re-86

quired for researchers to develop new experiments from the ground-up[24].87

Here, we combine digital technologies with common approaches from behav-88

ioral and natural resource economics to scale the study of adaptation across89
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diverse fishing organizations. We designed a digital version of previously-90

tested, in-person, field experiments on behavioral responses to climate change91

and used mobile computing platforms (smartphones, tablets) to target fishers92

across Mexico.93

Our main objective was to evaluate the feasibility of using mobile digital94

platforms to deploy economic experiments. People playing a game on their95

phone are not exposed to the same social cues as in in-person games, so96

their behavior might be different than in the real world. For digital game97

experiments to be a suitable substitute for in-person games, they must be98

able to overcome at least one of the three limitations stated above (i.e. cost,99

sample size, and external validity). We assessed feasibility by addressing the100

following two questions: 1) Can we compel enough players to play our dig-101

ital experiments? and 2) Can we collect a diverse sample, representative of102

different fisheries, environments, and demographics? Moreover, even if the103

answers to both questions are positive, we must also show that digital eco-104

nomic experiments can elicit and capture the same behaviors and responses105

as in-person economic experiments would. Therefore, we also asked: 3) How106

do responses captured by digital economic experiments compare to those107

observed for equivalent in-person games? Finally, we asked 4) What new in-108

sights, with respect to what was previously found, emerge from the analysis109

of the digital experiment data?110

As we will show, it is difficult to obtain large and diverse sample sizes111

of players, and we have no way of verifying that players are in fact fishers.112

However, recorded behavioral responses in our modest sample are qualita-113

tively similar to those observed in in-person experiments. And finally, we114
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find suggestive evidence that–in the context of our game–adaptation only115

ensues after a shock is experienced.116

2. Methods117

Our methods section is divided into two main parts. The first one focuses118

on our experimental design and approach to data collection. We begin with119

a description of the original experiment and its adaptation to the digital120

context. We then provide a brief description of the software development121

component of our project, as well as the use of social media to broadcast our122

game and track user engagement. The second part then focuses on the data123

analyses, which relate to our four main objectives. We first outline how we124

measured game engagement, we then present methods used to validate our125

responses, and then we introduce a new analysis where we study the timing126

of adaptation in relation to knowledge about and realization of shocks.127

2.1. Experimental design and data collection128

2.1.1. The digital economic experiment129

We develop our first digital economic experiment with the objective of130

studying players’ behavioral responses to climate change and, specifically,131

climatic shocks causing massive mortality of a target stock (sensu [25, 26,132

27, 28]). This choice is grounded in two reasons. First, the adverse effects133

of climate change are one of the most pressing issues faced by fishing com-134

munities today [14]. Second, we want to investigate whether the results of135

game experiments conducted using digital technology are comparable to the136

results of the same experiments previously conducted in person. To this137
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end, we replicate the dynamics of an in-person game experiment originally138

designed and conducted by Finkbeiner et al.[17] in Baja California (Mexico).139

The original in-person game simulated a common-pool resource harvested140

by five fishers over 15 rounds. The stock available to these players in period141

t depended on extraction decisions in period t − 1. Overall, 180 fishers142

from six fishing communities participated in their game. The experimen-143

tal treatments relevant to our exercise were designed to test for changes in144

fishing behavior under factorial combinations of environmental uncertainty145

(climatic shock) and communication. In each round, fishers were presented146

with the stock size ranging between 0 and 100. Fishers could then choose147

a harvest level, up to 5 resource units each per round. After total harvests148

were tallied, the escapement (i.e. stock size minus total harvests) grew at149

a constant 10% rate for next round’s stock size (up to maximum stock size150

of 100 units). Environmental uncertainty was introduced through a 10%151

chance of losing 50% of the total escapement each round, and communica-152

tion was introduced by allowing fishers to discuss non-binding agreements153

on individual and aggregate-level catch. The game also included a baseline154

treatment of no environmental uncertainty and no communication. Fishers155

were paid to participate in the game, and the payouts were designed to com-156

pensate for wages earned on an average day’s fishing. The experiments only157

allowed fishers to adapt by modifying their harvesting behavior, a common158

form of adaptation in small-scale fisheries[29]. However, we recognize that159

adaptation is multidimensional, and fishers may respond to environmental160

uncertainty by changing the timing and location of their fishing, target a161

different portfolio of species, rely on other financial sources, and even exit162
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the fishery[25, 27, 29, 30].163

Our digital experiments introduce three modifications to the original164

game. First, we restrict our implementation to two treatments: a baseline165

treatment without environmental uncertainty and a main treatment of inter-166

est with environmental uncertainty. We used the same parameters as Ref.167

[17], because we are interested in comparing the responses between in-person168

and digital experiments. We also note that the 50% reduction is well within169

the reductions observed in biomass, richness, and catch of Mexican small-170

scale fisheries exposed to marine heatwaves [28, 31, 32]. We do not incorpo-171

rate a communication treatment because this would require computationally172

expensive peer-to-peer connections. Regardless, each player still harvests a173

common-pool resource and interacts with four pre-programmed virtual play-174

ers, hereinafter also referred to as bots. The bots are programmed follow-175

ing real human decisions and parameters published by [17] for each treat-176

ment (See Appendix A). This parameterization allows for random round-177

and treatment-specific variations in harvest levels that replicate previously178

observed behavior, without the need for peer-to-peer connections. Finally,179

our game does not include any financial compensation or incentives because180

part of our objective is to see whether the game can reduce the costs of de-181

ploying experiments while simultaneously increasing sample size and external182

validity (but see [33] for a discussion on response rates and monetary incen-183

tives). Mathematical equations governing game dynamics and pseudo-code184

are provided in Appendix A.185

8



2.1.2. Development of the digital platform186

The digital experiment uses a web-based platform, which we developed187

under the ShinyApps framework in R and RStudio [34, 35]. This provides a188

simple way to run R code in a remote server accessed through an HTML front-189

end. The digital platform, called “La Pesca Cambiante” (i.e., The Changing190

Fishery) is available online1; the source code is openly accessible on GitHub2.191

We assumed most players would access the game on their phones or tablets,192

so we developed the user interface with a portrait orientation.193

Upon entering the app, users are presented with a brief optional survey194

asking whether they are fishers, and other demographic information (Fig-195

ure 1a). They are then presented with instructions on how to interact with196

the controls (Figure 1b). The main screen (Figure 1c) is designed to repli-197

cate the information available to players during the original treatments of198

the game implemented by [17].199

We optimized the user interface by holding two focus groups where players200

tested the digital platform before releasing it to the public. The first one with201

personnel from the civil society organization Comunidad y Biodiversidad,202

A.C. (COBI; n = 5 players) and the second with members of a small-scale203

fishing cooperative in El Rosario, Mexico (n = 5 players). These helped204

us develop, refine, and finalize the user interface for the digital economic205

experiment, but no changes were made to the underlying game dynamics.206

Throughout the game, players could observe the total stock size with the207

number of specimens in the fishing ground and a numeric badge indicating208

1https://innovacionazul.shinyapps.io/PescaCambiante
2https://github.com/jcvdav/FishCatchR
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current population size (Figure 1c). One of three species of commercial209

interest (crab, shrimp, and finfish) was randomly selected at the beginning210

of each round to ensure a random and diverse representation of the resources211

commonly targeted by players. Players could also observe the total catch212

by the entire group, their own previous catch, and a counter (from 0 to 15)213

showing the current round number. A slider allows players to select their214

catch each round (0-5, or maximum population size) and a button allows215

players to submit their harvesting intentions. When the baseline treatment216

was completed (Figure 1d) and players indicated to play the next game, they217

were presented with pop-up notification of environmental uncertainty and218

the game’s color scheme was modified (Figure 1e).219
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a                                                   b                                                    c

d                                                   e                                                    

Figure 1: Five screenshots of the digital application. Panel a shows the welcome

screen, with the brief optional survey. Panel b shows the instructions given to players.

Panel c shows the baseline playground, with four informational badges. Panel d shows

the end-of-game message and an option to advance to the next game (treatment). Panel e

shows the playground for the environmental uncertainty treatment, along with the pop-up

notification. Note the change in color scheme between treatments (from blue in c-d to red

in e).
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2.1.3. Communication and outreach220

Testing our ability to recruit players into the game was one of our research221

questions. Accordingly, we used two approaches to reach out to potential222

players. First, we wrote a blog post (in Spanish3) where we introduced the223

project, the objectives, and the game. The blog post contained an invitation224

and link to play the app. The blog post was shared through the networks (i.e.,225

Facebook, web site, and ad hoc WhatsApp groups) owned by PescaData, a226

digital logbook app for small-scale fishers. We used short video clips with227

a demonstration of the game (Supplementary materials Video 1 and Video228

2). Second, we posted a Facebook message also on COBI’s account with a229

link to the game. We leveraged these social media platforms because they230

are actively used by PescaData and COBI, which allowed us to connect with231

their followers.232

We used Facebook’s sponsoring service to promote our post four times,233

for 10, 13, 8, and 16 days, at the costs of $1000 MXN, $1200 MXN, $400234

MXN, and $1200 MXN each, respectively. The total investment was $3800235

MXN, or around $200 USD in 2024. We used Facebook analytics to count236

the number of times people clicked on the posts’ links, and to collect basic237

demographic information like self-reported gender identity, age, and location.238

We also tracked the number of interactions with the blog post, with the link239

that took readers to the game, and the extent to which users interacted240

with the game (e.g., access, access and play one round, access and play two241

rounds).242

3See: https://pescadata.org/la-pesca-cambiante/
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2.1.4. Tracking engagement and behavioral responses243

For each player’s interaction with the game, we gathered data on: type244

of treatment, number of the fishing round, population size, individual har-245

vest, aggregate harvest, escapement, and indicators for catastrophic mor-246

tality (when applicable), as well as the data gathered in the optional sur-247

vey (Figure 1A). This data, stored in a Google spreadsheet with a unique248

(anonymized) identifier, is comparable to the one generated by the original249

in-person game experiments, with which we will compare our results.250

2.2. Data analysis251

2.2.1. Sample acquisition rates252

We first performed a survival analysis to derive the proportion of players253

that made it from one stage to the next. We counted the number of interac-254

tions at each of the following stages: Social media post, blog post, entering255

the game, playing at least one treatment in the game (i.e., baseline), and256

playing at least two treatments in the game (i.e., baseline and environmen-257

tal uncertainty). We calculated the proportion of interactions flowing from258

one step to the other, and also generated an overall survival matrix to show259

pairwise comparisons of proportions of players between these stages.260

2.2.2. Measuring behavioral responses261

We followed a similar approach to [17] and tested for changes in harvest262

behavior between treatments. The original in-person analysis used average263

group catch as a fraction of maximum catch as the response variable. Here,264

since only one player per game is human (the other four being bots), we use265

player-level catch as a fraction of maximum player-level allowable catch for266
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each round as our response variable. We are interested in two parameters:267

1) the slope of catch over time and 2) the difference in catch rates across268

treatment status. We estimate these parameters of interest using a linear269

regression of the form:270

yijt = β0Tt + β1Di + µRj + ϵi,t (1)

where yi,j,t is the catch rate of player i from region j, at round t, β0271

captures the change in catch rate through rounds (Tt), and β1 captures the272

change in catch rate when player i faces the environmental uncertainty treat-273

ment (i.e., Di = 1). We include fixed-effects by region Rj captured by vector274

µ, and implement Driscoll-Kraay standard-errors [36]. Note that we only275

analyze responses by human players, never by bots. We also perform robust-276

ness tests restricting the sample to sessions where the players played both277

the baseline and treatment rounds, and when they only played the base-278

line round. All regressions were performed using the fixest package (v0.12.1;279

[37]), running in R version 4.4.2 (2024-10-31) via 2025.05.0 Build 496 [35].280

Regression tables were produced with the modelsummary package version281

2.2.0 [38], while figures were produced with ggplot2 version 3.5.2 [39].282

2.2.3. Validation of behavioral responses283

Finkbeiner [17] showed that when fishers became aware of environmen-284

tal uncertainty, they reduced their catch rates; this behavioral response was285

more pronounced for those who perceived to have been more exposed to en-286

vironmental change in the real world. But do they adapt as soon as they287

are informed about the possibility of an environmental shock that may cause288

catastrophic mortality in the exploited stock, or only once they have actually289
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experienced an environmental shock? We address this question by running290

two tests. First, we test whether the catch trend of players that are informed291

about the risk of an environmental shock but have not experienced it yet292

differs from the catch trend the first time they play the game with no en-293

vironmental uncertainty. To do so, we estimate the same model as before,294

but restrict the sample to all rounds leading up to, but not including, the295

round in which the first shock ensued. Thus, this sample only contains activ-296

ity where players were aware of the environmental uncertainty but they had297

not yet experienced it in the game. A β̂1 different from zero would indicate298

that knowledge of environmental uncertainty alone is enough to induce an299

anticipatory behavioral change. Specifically, a reduction in catch rates if β̂1300

< 0, whereas an increase in catch rates if β̂1 > 0.301

Then, we asked whether catch rates right after players experience an302

environmental shock for the first time differ from catch rates of the same303

players right before they experience an environment shock. We answer this304

question by extending the analysis under an event-study framework, where305

we look at player-level changes in behavior immediately before and after the306

shock is delivered. This allows us to assess if and how behavior changes307

after a shock, rather than information about a potential shock. Here, the308

estimating equation takes the following form:309

yit = βtTt + α1Pret + α2Postt + ω + τ + ϵit (2)

Where yit is still our response variable measuring the catch rate of player310

i at time t, βt estimates a vector of dynamic treatment effects corresponding311

with time-to-treatment as indicated by the vector of dummy variables Tt312
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(between -5 and 5). Coefficients α1 and α2 estimate the effect of dummy313

variables that aggregate the effect of observations more than 5 rounds before314

(Pret) and after (Postt) from the time of treatment. Finally, ω and τ are315

unit- and time-fixed effects. Our supplementary materials include a series316

of robustness tests where we estimate the same model without α1 and α2317

and expanding Tt to the full range of the data, or where we use the robust318

two-way fixed-effect estimator proposed by Ref. [40].319

3. Results320

3.1. Summary statistics of user interactions321

Web analytics data show large engagement in all states throughout Mex-322

ico, with a total of 3,369 clicks on the link taking viewers to the blog post323

(Figure 2a). The largest number of social media interactions with the so-324

cial media posts were recorded for the state of Sonora (657 interactions),325

one of Mexico’s most important states in terms of fisheries production. Ve-326

racruz, Baja California, Chiapas, and Yucatán round out the top-five states327

with large engagement numbers of 592, 491, 490, and 469, respectively. The328

bottom-five states were Aguascalientes (22), Querétaro (28), Tlaxcala (37),329

Nuevo León (48), and Baja California Sur (56) (note that the bottom four330

are all landlocked states or states where fisheries are not a primary economic331

activity). There were 14 (0.38%) instances where the state could not be iden-332

tified. Demographic data suggests that the posts receive the most interaction333

from men, especially those between 25 and 45 years of age (Figure 2b). The334

female modal age was lower, with 18-34 years of age being the largest group335

presented in the data.336
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Traffic analytics data show that 55 people accessed the game. Of these,337

21 completed at least the first game and 11 played more than one game. Most338

players did not report themselves as fishers. These interactions result in a339

total of 740 rounds played across both treatments (N = 310 baseline, N = 430340

uncertainty). Figure 3 shows a survival matrix and the cumulative growth in341

the number of unique users with respect to each post. Note that promotion342

of social media posts often resulted in corresponding increases in interac-343

tions with the game, suggesting broad promotion could be a mechanism for344

increasing engagement. These data suggest an end-to-end player acquisition345

rate (also termed “click-through rate”) of 0.43%, at a cost of $345MXN (about346

$18 USD) for each of our 11 players.347
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Figure 2: Map of interactions with the Facebook posts. Land polygons show states

in Mexico, and they are colored based on the number of interactions received in blog posts.

Polygons over the ocean show Mexico’s five fishing regions and are colored based on the

number of players from each. Gray polygons indicate no samples.
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Figure 3: Bottlenecks in user interaction and sample acquisition. Panel a shows

a survival matrix, where each block represents a stage and the numbers (and colors) in

them show the amount of interactions. Panel b shows the total number of sessions where

the user filled-in the survey and started the game, where at least the baseline game was

played, and where the player played the baseline and uncertainty games. The dashed

vertical lines indicate dates in which social media posts were posted.
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3.2. Validation of behavioral responses348

Time series of player behavior and stock size for digital experiments as349

well as previous data from Finkbeiner et al [17] are shown in Figure 4. It is vi-350

sually evident that catch rates decrease through time in all cases (Figure 4a).351

These visual insights are corroborated by regression analysis of the digital ex-352

periment data, where we find that catch rates decrease significantly through353

time (β̂0 = −0.009; p < 0.01) and that, when faced with environmental uncer-354

tainty, players significantly reduce their catch rates (β̂1 = −0.094; p < 0.01).355

The estimate for change in catch rates through time is equivalent to that re-356

ported by Finkbeiner et al[17] (at -0.012). However, our estimate of the effect357

of environmental uncertainty indicates a stronger response by players, rela-358

tive to what in-person experiments recorded (-0.06). Restricting the sample359

only to players that played both games yields a β̂0 = −0.008(p < 0.05)360

and β̂1 = −0.106(p < 0.01), while looking at the change in catch rate361

through time for those who only played the baseline treatment we find362

β̂0 = −0.01(p < 0.01). Figure 5 shows coefficient estimates compared to363

those estimated from in-person experiments [17], and Table 1A shows model364

summary statistics; both also show results for different subsamples as robust-365

ness tests.366
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Figure 4: Comparison of state variables in the original experiments by

Finkbeiner et al [17] and the digital experiments. Panel a shows change in harvest

rates through time, and panel b shows change in population size through time. Dashed

lines represent data from original in-person experiment (baseline treatment only) and solid

lines indicate data from digital experiments performed here. Colors indicate the treatment.
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Figure 5: Coefficient estimates retrieved from digital experiments. The left panel

shows the coefficient on time (i.e., β̂0) and the right panel shows the coefficient on en-

vironmental uncertainty (i.e., β̂1). Points show coefficient estimates, the blue portion of

the error bars shows standard errors, and the black portion of the error bar shows 95%

confidence intervals. We provide estimates for the full sample and two sub-samples as

robustness checks (in one we retain only those who participate in both baseline and envi-

ronmental uncertainty treatments, and in other one we limit it to baseline estimates only,

when relevant). The solid horizontal line indicates zero, and the dashed horizontal line

indicates the central estimates from Finkbeiner et al, [17]. Note the different y-axis scales

between plots.
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Table 1: Coefficient estimates for the effect of game round

and environmental uncertainty on catch rate. Panel

A shows summary statistics associated with the validation

results plotted in Fig 5. Panel B shows results for testing

for the effect of information alone.

Full Both treatments Baseline only

Panel A) Validation analysis

Round -0.009*** -0.008** -0.010***

(0.003) (0.004) (0.003)

Env. Uncertainty -0.094*** -0.106***

(0.020) (0.022)

Num.Obs. 740 590 150

Panel B) Information only

Round -0.007** -0.005 -0.010***

(0.003) (0.004) (0.003)

Env. Uncertainty -0.030 -0.030

(0.029) (0.034)

Num.Obs. 522 372 150

* p <0.1, ** p <0.05, *** p <0.01

Each column represents results for a different sample. Each panel

represents a different test. Numbers in parentheses are Driscol-

Kraay Standard errors. All specifications include fixed-effects by

region.
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3.3. Assessing the effects of shocks on behavioral responses367

A novel preliminary insight from our analysis is that information about368

environmental uncertainty alone (i.e., the possibility that an environmental369

shock will significantly reduce future stock size) does not induce a behavioral370

response in players that have not experienced yet an environmental shock.371

When restricting the sample to observations that occur before any shocks,372

we find no significant treatment effects (β̂1 = −0.030; p = 0.3; Table 1B).373

This suggests that adaptation occurs only after players experience their first374

shock, which we corroborate with an analysis of dynamic effects. We find375

that all coefficients leading to the impact are not significantly different from376

zero (Figure 6). Then, after players experience an environmental shock, they377

reduce their catch rates by more than 0.13, on average, for at least two consec-378

utive rounds (p < 0.05; See Figure 6 and Table B.1). Their catch rates remain379

lower than before the shock, though not significantly so for all five rounds380

(Figure 6). The coefficients on the dummy variables indicating observations381

that occur outside the 5-day window considered in the dynamic effects are382

also consistent, with no significant differences before (α̂1 = 0.021; p = 0.58),383

and significantly negative differences after (α̂2 = −0.158; p < 0.1; see Ta-384

ble B.1). The dynamic treatment effects are also robust to other linear re-385

gression specifications and to estimators specifically designed for staggered386

treatment adoption and repeated treatments (See Figure B.1).387
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Figure 6: Event-study plot for change in catch rate relative to time of the shock.

Points show coefficient estimates (relative to the round in which the shock was delivered),

the blue portion of the error bars shows standard errors, and the black portion of the error

bar shows 95% confidence intervals. Recall that the shock is delivered at the end of the

round. The figure shows no significant changes in catch rates for the 5 rounds leading

to the shock, and a significant decrease in catch rates (i.e., adaptation) once a shock has

been realized. The effect lasts for two rounds after the shock (p < 0.05).
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4. Discussion and Conclusions388

Our objective was to explore the potential use of digital economic exper-389

iments as a way to scale-up the study of adaptation in small-scale fisheries.390

We asked whether we could recruit enough participants, and whether their391

responses could be compared with those reported by similar in-person exper-392

iments. We found that it costs around $18 USD to recruit each participant,393

although we could not guarantee all players were fishers or that they would394

play all games. Despite our small sample, digital and in-person experiments395

produced similar patterns: catch declined over time and fell further under396

shock uncertainty [17]. Other experiments focusing on fishing behavior in397

the presence of ecological thresholds with tipping-points–e.g., reproductive398

failure when spawner density drops below a give threshold–also found that399

fishers fished less when facing critical ecological thresholds, relative to base-400

line treatments without thresholds [19].401

Our analysis also revealed that information of environmental uncertainty402

alone is not enough to induce a behavioral change. Instead, players reduced403

their harvest only after they had actually experienced a shock. Adaptation404

was brief and lasted for only two rounds. We must emphasize that these find-405

ings come from a very limited sample size and should be taken as preliminary406

rather than definitive.407

Exit interviews with players conducted by Finkbeiner et al[17] had high-408

lighted that previous experience with an environmental shock was a correlate409

of voluntary catch reduction in this previous experiment. Our digital exper-410

iment and analysis presented here supports this hypothesized effect, thereby411

providing an explanatory mechanism for variable adaptive responses across412
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communities, and an expectation that adaptive responses may increase as the413

occurrence of extreme events escalate under climate change scenarios [29]. In414

the following lines we expand on each of these points, provide caveats related415

to our analysis and lessons learned, and provide concluding remarks.416

4.1. Recruitment417

We documented more than 3,000 interactions with our social media posts,418

but these only resulted in 21 people engaging in gameplay (with only 11419

playing treatment and control games). This suggests a 0.43% conversion420

rate, which could limit scalability. In monetary terms, this is equivalent to421

around $18 USD per player. Attaining a sample size comparable to that422

of Finkbeiner [17] (N = 180) would require an investment of around $3,300423

USD. Importantly, even with that level of investment, we would not be able424

of guaranteeing that all players are fishers, or that players will complete all425

games.426

The link between reading a media post and clicking on the button that de-427

ployed the game was the largest bottleneck in the sample acquisition pipeline,428

suggesting the largest marginal gains can be made here. To overcome the429

challenge of the observed large drop between interaction with the platform430

and engagement through the game, future efforts could consider incentiviz-431

ing potential users to engage with the game by offering a reward or other432

incentives [33, 41, 42]. We decided against it because fulfilling the reward433

is logistically difficult (players from anywhere in Mexico could play), and434

because we were explicitly interested in testing for the feasibility of digital435

experiments in its simplest form: a link to the game, and an invitation to436

play. Future efforts should balance the costs of incentivizing participation437
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versus paying for promotion of social media posts or expanding the initial438

pool of potential players. Alternatively, longer promotional campaigns and439

increased media activity and exposure may suffice to generate larger sam-440

ple sizes. Formally assessing the feasibility and efficacy of these different441

approaches to increasing engagement is a critical next step before digital442

platforms can be broadly used for addressing research questions of adaptive443

responses to environmental uncertainty and other shocks.444

4.2. Validity445

Although our sample size is small, we find general agreement with pre-446

vious behavioral economic field experiments by Finkbeiner et al. [17]. This447

suggests that, if the sample collection and player identity hurdles can be over-448

come, digital economic experiments may provide a scalable solution to study449

adaptation in small-scale fisheries. Although we found similar results, our450

estimates of treatment effect of environmental uncertainty indicate a larger451

reduction in catch rates than that reported for in-person experiments. There452

are a few potential explanations for this.453

First, our sample size and composition may limit our ability to retrieve the454

true parameter implying our estimates may be biased. Second, the difference455

arises purely due to the game being played online, rather than in-person.456

These could be because people enjoy full anonymity in the digital games,457

or because the in-person games provide the opportunity for non-verbal cues458

and body language to still play a role. A third option is that the monetary459

incentives in the field enhance the relative payoffs from immediate extractions460

in the game under the uncertainty of a sudden stock reduction. A final option461

is that fishers playing the game have had time to learn to adapt to climate462
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change since the original experiments by Finkbeiner et al. [17](back in 2015),463

for example through the prolonged and extreme marine heat wave that has464

affected the region starting in 2014 and through 2016 [27]. Based on our465

result that direct experience with an environmental shock significantly affects466

behavior, we believe the most likely explanation is that most fishers have now467

been exposed to some of the adverse effects of climate change, and that they468

have internalized adaptation routes [43]. This is also consistent with previous469

research on strength of adaptive responses as it relates to historical exposure470

to climatic events [29].471

4.3. Implications472

Our results show that digital platforms hold potential to scale up the473

study of adaptation in small-scale fisheries, although we note some draw-474

backs persist. Working through these drawbacks could provide decision mak-475

ers, civil society organizations and academic researchers a relatively cheap,476

fast, and scalable solution to deploy experiments investigating adaptation to477

ongoing shocks, and test the outcomes of new policies before they are imple-478

mented. We encourage others to work towards overcoming these drawbacks479

and to expand on our analysis, including testing for external validity and480

sampling representation.481

We also found that, even when players were provided with information482

on the potential of a shock, they did not adapt until the shock had occurred.483

This finding is derived from a small sample size, but could be cause for484

concern because many fishery managers, politicians, and environmental sci-485

entists often rely on “environmental outreach” or “science communication” as486

strategies to induce behavioral change. This finding may have implications487
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beyond fishers, and raises an intriguing area of research about the role of488

individual experience in adaptation and behavioral modification. This also489

opens up the possibility to explore whether and how different ways of com-490

municating the potential of a shock may induce a behavioral response. Our491

preliminary findings provide support to the argument that we need to pay492

attention to the cognitive biases and limitations that affect humans when493

making complex decisions [44] where, in our context, they must face the494

problem of cooperation with other fishers while solving the challenge of an-495

ticipating future shocks that can affect payoffs in the future. Moreover, the496

games themselves might be explored as tools for creating experiences with497

environmental change and uncertainty, and their potential use for awareness498

and engagement of key actors as well as the general public could be further499

investigated.500

4.4. Other limitations501

The ShinyApps framework provides sufficient control over the develop-502

ment of the web-based platform that we used to deploy the games. This503

provides an advantage over pre-designed and pre-programmed games [24]504

because it allows the experimenter to design new treatments. The frame-505

work has been used in academia to build a large sample of solutions-oriented506

web-based apps, from evaluating community-based marine reserves [45] or507

simulating potential effects of subsidy reforms [46]. However, we recognize508

that the approach has some limitations, which may become increasingly rel-509

evant for other studies. First, there is a barrier to entry in learning how510

to write the R scripts that control the user interface and the back-end of511

the game. Fortunately, others have developed valuable guidelines and best-512
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practices to inform the use of ShinyApps in academic research [47, 48], which513

provide useful insights to those interested in implementing this approach.514

Another limitation is that the game does not allow for peer-to-peer con-515

nections where players may play against or in coordination with each other,516

instead of with the pre-programmed virtual fishers. This is an important517

point, as it is crucial that experiments replicate the social dynamics of518

decision-making that may arise in the real world. Although we note that the519

limitation could be bypassed by hosting the platform on private servers rather520

than on those provided by shinyapps.io services, which employ ephemeral521

connections to make computation more efficient and accessible. We further522

note that a way to work around both of these limitations is for research523

teams to engage with professional software developers, who have the knowl-524

edge and expertise required to build the right tool. This is something we are525

considering, though we note that it could raise costs.526

This last point highlights the role of costs, and it is important to mention527

factors not included in our cost estimates. We do not account for the costs of528

developing the app and hosting it on a server, or the costs of performing the529

focus groups. We believe these could be considered as fixed costs, which may530

be comparable to the time end effort required to design any game, regardless531

of its delivery method. Similarly, we do not account for the costs incurred by532

players accessing the platform on wireless cell phone data plans, rather than533

via WiFi. This means players may be incurring some costs when engaging534

with us, in contrast with in-person games where participants are compensated535

for their time [33, 41, 42]. This raises important considerations around the536

equity implications of research using digital experiments. Future researchers537
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may consider including compensations that are enough to replicate incentives538

and that also compensate players for their time and any other costs incurred.539

Performing digital experiments also limits our capacity to enforce inter-540

actions during the experiment. For example, we could not guarantee that all541

players were fishers or that the rounds came to completion. These limitations542

resulted in a truncated sample that could not be attributed to fishers with543

100% certainty. In turn, this limited our ability to make statistical inference.544

While our general results are in alignment with previous findings [17] and545

were robust to a series of other tests and specifications (See supplementary546

materials), we must emphasize that our estimates of behavioral responses547

are derived from only 740 rounds played, which come from a small number548

of users who played both games (N = 11 here vs. N = 180 in the in-person549

games), and that not all users self-reported as fishers.550

4.5. Conclusions551

Our feasibility tests suggest that digital experiments may be able to cap-552

ture similar behavior as in-person games, and that information about uncer-553

tainty alone is not enough to induce a behavioral change in fishers: adapta-554

tion likely ensues once the threat has materialized. However, we note that555

our small sample precludes us from generalizing our findings.556

Digital economic experiments may one day provide a feasible, cost-effective,557

and scalable alternative to studying adaptation in small-scale fisheries. How-558

ever, implementation of digital experiments may not be as straightforward as559

initially thought. We must pay spatial attention to who participates in the560

game to ensure only fishers are being studied, account for self-selection bias,561

and secure large-enough sample sizes that allow for appropriate statistical562
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power. Similarly, we must be conscious of costs being passed on to the com-563

munities, and consider approaches to mitigating this. We encourage other564

researchers to study how digital technologies may help large-scale deploy-565

ments of digital economic experiments to further the study of adaptation.566
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Appendix A. Supplementary text710

Pseudo-code and mathematical representation of the game experiment711

The timing of events is the following:712

1. The user observes Nt, total stock size in round t713

2. User i choses a catch level (0-5) for round t, given by: hi,t. This is their714

choice variable, and what we will use as a response variable.715

3. Bots are also pre-programmed to fish as a function of round and treat-716

ment status, so we must account for their catch. Total catch at time t717

is simply the sum of everyone’s catch, given by: Ht =
∑5

1=1 hi,t718

4. We can then calculate escapement at time t as: Et = Nt −Ht.719

5. The resource then grows according to the following equation of motion:720

Nt+1 = (1 + r)Etγt(1− µt) (A.1)

Where:721

• r is the resource’s intrinsic growth rate, with a constant value of722

(r = 0.1)723

• If the player is playing the environmental uncertainty treatment,724

then: γt is the environmental variation parameter, drawn from a725

log-normal distribution such that: γt lnorm(1, 0.1)726

6. µt is the mortality rate under a shock at time t. It takes a value of 0 in727

the absence of a shock, or 0.5 otherwise.item The app shows the user728

the resulting population size (Nt + 1), and we begin at point 1 again.729
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Appendix B. Supplementary figures and tables730
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Figure B.1: Alternative specifications and estimators applied to the event-study

analysis. The x-axis shows the number of rounds leading to and after the treatment.

Points show coefficient estimates. Each color corresponds to a different estimation strategy.

Our main-text results for dynamic effects (limited to ±5 rounds) are similar to those

estimated with data from all rounds and drop the pre- and post- dummy variables, and

when we use the Ref. [40] estimator for staggered treatment adoption.
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Table B.1: Coefficient esti-

mates for event

study

(1)

Est. S.E.

pre 0.021 0.038

post −0.158** 0.066

ttt = -5 −0.004 0.045

ttt = -4 0.018 0.057

ttt = -3 −0.001 0.085

ttt = -2 0.030 0.038

ttt = -1 0.063 0.046

ttt = 1 −0.138** 0.049

ttt = 2 −0.137** 0.050

ttt = 3 −0.102 0.061

ttt = 4 −0.060 0.046

ttt = 5 −0.084 0.056

Num.Obs. 520

* p <0.1, ** p <0.05, *** p

<0.01

ttt indicates ’time-to-

treatment’, with negative

values occurring before shock

and positive values after

shock.
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