
Data Tidying and Merging

Juan Carlos Villaseñor-Derbez (JC)

Last week you were asked:

How much money have tuna purse seiners made since 2000 when fish-
ing for bigeye tuna (Thunnus obesus) in the Eastern Pacific Ocean?

We made some simplifying assumptions and got some values (a total of 3,070
M USD since 2000, or about 127 M USD per year). You are now tasked with
coming up with more refined estimates. For example, we will account for the
fact that the price of fish varies every year.

How we will approach this:

• Find data that shows prices per year and species
• Read them, clean them, tidy them up (The “data tidying” part)
• Combine our catch data from last week with this new price data (The

“merging” part)
• Re-calculate our total revenues since 2000

This will require three pipelines:

• Tidy price data (Exercise 1)
• Wrangle catch data (Exercise 2)
• Combine tidy prices and catch data (Exercise 3)

Pipelines 1 and 3 contain tools covered this week. You should already be familiar
with pipeline 2.

Exercise 1: Tidying price data
Part A: Downloading the data
Post-it up

1. In a web browser, go to ffa.int. This is the website for the Pacific Islands
Forum Fisheries Agency

2. Hover over “Publication and Statistics” on the top menu
3. Select “Statistics”
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4. You will be taken to a site with five items. Download the zip folder
called Economic and Development Indicators and Statistics:
Tuna Fishery of the Western and Central Pacific Ocean 2024

5. As before, place the downloaded zip file in your EVR628/data/raw folder
and proceed to extract it

6. Open the excel file called Compendium of Economic and Development
Statistics 2024 and study the Contents tab

7. Can you identify the price data that we need?

• Which sheet
• What range?

Post-it down

Part B: Reading excel data
Post-it up

1. Open your RStudio project for EVR628
2. In your console, install the readxl package: install.packages("readxl")
3. Start a new script called tuna_analysis_prices.R1

4. Add the usual code commenting outline
5. We will need three packages: readxl, janitor, and tidyverse, load them

at the top of your script using library()
6. Use ?read_excel() to look at the documentation for the function
7. Use read_excel() to create a new object called tuna_prices and read

the price data we need2. Immediately pipe it into clean_names.

Post-it down
library(readxl)
library(janitor)
library(tidyverse)

tuna_prices <- read_excel(path = "data/raw/Economic-and-Development-Indicators-and-Statistics-Tuna-Fishery-of-the-Western-and-Central-Pacific-Ocean-2024-32765/Compendium of Economic and Development Statistics 2024.xlsx",
sheet = "B. Prices",
range = "A35:E63",
na = "na") |>

clean_names()

Part C: Inspecting price data
Be prepared to discuss the following points:

Post-it up
1I would typically suggest to overwrite whatever we had last week in tuna_analysis.R

because GitHub would keep a version, but I understand you might want to keep the script as
is

2Hint: You will need to specify a file path, a sheet, and a range of cells.
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1. Inspect the column names of tuna_prices using colnames() in your con-
sole.

2. How many columns and rows do we have?
3. Any missing values?
4. Do we need to make the data wider or longer?
5. Using comments, write out what the target data should be (expand my

code chunk see what I wrote)

Post-it down

See an example of my description below
colnames(tuna_prices)

[1] "year" "japan_fresha" "japan_frozenb" "us_freshc"
[5] "us_frozend"
dim(tuna_prices)

[1] 28 5
tuna_prices |>
filter_all(any_vars(is.na(.)))

# A tibble: 4 x 5
year japan_fresha japan_frozenb us_freshc us_frozend

<dbl> <dbl> <dbl> <dbl> <dbl>
1 1997 8204. 8169. NA NA
2 1998 7703. 6320. NA NA
3 1999 8809. 9093. NA NA
4 2000 9198. 8557. NA NA
# The final data set should have two columns: year and price. Since we have four
# prices (two markets, two presentations), I will use the average price per year.
# The tidy data set should therefore have four columns: year, market,
# presentation, and price.

Part D: Tidy your price data
Post-it up

1. Look at the documentation for your pivot_* function. What does it say
about cases where names_to is of length > 1?

2. What about the names_sep argument?
3. Use the appropriate pivot_* function to reshape your data and save them

to a new object called tidy_tuna_prices3

3Hint: Your names_to argument should be a character vector of with two items. names_
_sep should be inspired by our clever use of snake_case.
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4. Your resulting tibble should have 104 rows and 4 columns and look like
this:4

tidy_tuna_prices <- tuna_prices |>
pivot_longer(cols = 2:5,

names_to = c("market", "presentation"),
names_sep = "_",
values_to = "price",
values_drop_na = T)

tidy_tuna_prices

# A tibble: 104 x 4
year market presentation price
<dbl> <chr> <chr> <dbl>

1 1997 japan fresha 8204.
2 1997 japan frozenb 8169.
3 1998 japan fresha 7703.
4 1998 japan frozenb 6320.
5 1999 japan fresha 8809.
6 1999 japan frozenb 9093.
7 2000 japan fresha 9198.
8 2000 japan frozenb 8557.
9 2001 japan fresha 8260.

10 2001 japan frozenb 5983.
# i 94 more rows

Post-it down

Values in presentation

Note that the values in the presentation column are not ideal. They
end in a, b, c, and d due to footnotes included in Excel. For now this
doesn’t matter because we will quickly remove them. We’ll cover some
text wrangling in Week 9.

Part E: Calculate mean annual price
Post-it up

1. Modify the pipeline that creates tidy_tuna_prices to get the mean price
per year5

tidy_tuna_prices <- tuna_prices |>
pivot_longer(cols = 2:5,

4Hint: If you have 112 rows, remember you can use values_drop_na = T
5Hint: You will use group_by() and summarize(), as well as |>

4



names_to = c("market", "presentation"),
names_sep = "_",
values_to = "price",
values_drop_na = T) |>

group_by(year) |>
summarize(price = mean(price))

tidy_tuna_prices

# A tibble: 28 x 2
year price
<dbl> <dbl>

1 1997 8186.
2 1998 7011.
3 1999 8951.
4 2000 8877.
5 2001 5633.
6 2002 5342.
7 2003 5285.
8 2004 5739.
9 2005 5554.

10 2006 5177.
# i 18 more rows

Post-it down

Exercise 2: Tidying tuna catch data (again)
Part A: Read the tuna catch data

Note: You can copy-paste and modify your code from last week, but
make sure your code is organized.

Post-it up

1. Read in the tuna catch data from last week
2. Filter it to retain bigeye tuna (BET) caught by the purse seine fleet (PS)

since 2000
3. Calculate total catch by year. Your final data should have 24 rows and 2

columns, as below

Post-it down
# Load the data
tuna_data <- read_csv("data/raw/CatchByFlagGear/CatchByFlagGear1918-2023.csv") |>
# Clean column names
clean_names() |>
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# Rename some columns
rename(year = ano_year,

flag = bandera_flag,
gear = arte_gear,
species = especies_species,
catch = t)

ps_tuna_data <- tuna_data |>
filter(species == "BET", # Retain BET values only

gear == "PS", # Retain PS values only
year >= 2000) |> # Retain data from 2000

group_by(year) |> # Specify that I am grouping by year
# Tell summarize that I want to collapse the catch column by summing all its values
summarize(catch = sum(catch))

ps_tuna_data

# A tibble: 24 x 2
year catch
<dbl> <dbl>

1 2000 95283
2 2001 60518
3 2002 57422
4 2003 53051
5 2004 65471
6 2005 67895
7 2006 83837
8 2007 63451
9 2008 75028

10 2009 76800
# i 14 more rows

Exercise 3: Combine your catch and price data
Part A: Plan the join

1. Think about what type of join you want
2. What will be on the left and what will be on the right?
3. What is the key?
4. Write down, using human language, what you want to do.

Post-it up

Part B: Perform the join
1. Perform the join and save the output to an object called tuna_revenues
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2. Create a new column that contains the annual revenue in M USD. Pay
attention to the units.

Post-it down
tuna_revenues <- ps_tuna_data |>
left_join(tidy_tuna_prices, by = join_by(year)) |>
mutate(revenue = price * catch / 1e6)

tuna_revenues

# A tibble: 24 x 4
year catch price revenue
<dbl> <dbl> <dbl> <dbl>

1 2000 95283 8877. 846.
2 2001 60518 5633. 341.
3 2002 57422 5342. 307.
4 2003 53051 5285. 280.
5 2004 65471 5739. 376.
6 2005 67895 5554. 377.
7 2006 83837 5177. 434.
8 2007 63451 5054. 321.
9 2008 75028 5636. 423.

10 2009 76800 6175. 474.
# i 14 more rows

Part C: Answer the questions again
1. How much TOTAL revenue since 2000?
2. How much mean ANNUAL revenue since 2000?
3. Make a figure
4. How do these plot and numbers compare to what we found last week?

sum(tuna_revenues$revenue)

[1] 11752.32
mean(tuna_revenues$revenue)

[1] 489.68
# Build plot
ggplot(data = tuna_revenues, # Specify my data

mapping = aes(x = year, y = revenue)) + # And my aesthetics
geom_line(linetype = "dashed") + # Add a dashed line
geom_point() + # With points on top
labs(x = "Year", # Add some labels

y = "Revenue (M USD)",
title = "Annual revenue from fishing bigeye tuna by purse seine vessels",
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caption = "Data come from the IATTC") +
# Modify the theme
theme_minimal(base_size = 14, # Font size 14

base_family = "Times") # Font family Times
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Extra exercises for you to practice
The following four exercises use data that are built directly in R. You will need
to copy and paste the provided code in your console (or R script) to make sure
the objects appear in your environment.

Exercise 1: Pivot Longer Practice
Scenario: You are a TA and have been given grade data where each row rep-
resents a student and columns represent their scores on assignments 1-4. You
need to calculate the mean grade for each student.6

# Create the dataset
student_scores <- tribble(
~student_id, ~assignment_1, ~assignment_2, ~assignment_3, ~assignment_4,
"S001", 85, 92, 78, 88,
"S002", 91, 89, 95, 82,
"S003", 76, 84, 91, 79,

6Hint: Use pivot_longer() to transform this data so that each row represents one student-
assignment-score combination, then use group_by() and summarize() to calculate the mean
grade for each student.
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"S004", 88, 93, 87, 94
)

student_scores

# A tibble: 4 x 5
student_id assignment_1 assignment_2 assignment_3 assignment_4
<chr> <dbl> <dbl> <dbl> <dbl>

1 S001 85 92 78 88
2 S002 91 89 95 82
3 S003 76 84 91 79
4 S004 88 93 87 94

How I did it:
student_scores_long <- student_scores |>
pivot_longer(cols = starts_with("assignment"), # All columns from assignment_1 to assignment_4

names_to = "assignment", # Create new column called "assignment" with column names
values_to = "score") # Create new column called "score" with the values

student_means <- student_scores_long |>
group_by(student_id) |> # Group rows by student_id
summarize(mean_grade = mean(score)) # Calculate mean score for each student

student_means # View the result

# A tibble: 4 x 2
student_id mean_grade
<chr> <dbl>

1 S001 85.8
2 S002 89.2
3 S003 82.5
4 S004 90.5

Exercise 2: Pivot Wider Practice
Scenario: You have hurricane exposure data from different Florida counties.
You are asked to build a figure showing the relationship between pressure and
wind speed. Modify the data as needed and build a figure.7

# Create the dataset
hurricane_data <- tribble(
~county, ~metric, ~measurement,
"Miami-Dade", "pressure", 950,
"Miami-Dade", "precipitation", 12.5,

7Hint: Use pivot_wider() to transform this data so that each row represents a county and
each metric becomes its own column.
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"Miami-Dade", "wind_speed", 85,
"Broward", "pressure", 955,
"Broward", "precipitation", 8.3,
"Broward", "wind_speed", 72,
"Palm Beach", "pressure", 960,
"Palm Beach", "precipitation", 6.1,
"Palm Beach", "wind_speed", 68,
"Monroe", "pressure", 945,
"Monroe", "precipitation", 15.2,
"Monroe", "wind_speed", 95

)

hurricane_data

# A tibble: 12 x 3
county metric measurement
<chr> <chr> <dbl>

1 Miami-Dade pressure 950
2 Miami-Dade precipitation 12.5
3 Miami-Dade wind_speed 85
4 Broward pressure 955
5 Broward precipitation 8.3
6 Broward wind_speed 72
7 Palm Beach pressure 960
8 Palm Beach precipitation 6.1
9 Palm Beach wind_speed 68

10 Monroe pressure 945
11 Monroe precipitation 15.2
12 Monroe wind_speed 95

How I did it:
hurricane_wide <- hurricane_data |>
pivot_wider(names_from = metric, # Use values in "metric" column as new column names

values_from = measurement) # Use values in "measurement" column to fill new columns

hurricane_wide # Now each county is a row with separate columns for pressure, precipitation, wind_speed

# A tibble: 4 x 4
county pressure precipitation wind_speed
<chr> <dbl> <dbl> <dbl>

1 Miami-Dade 950 12.5 85
2 Broward 955 8.3 72
3 Palm Beach 960 6.1 68
4 Monroe 945 15.2 95
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ggplot(hurricane_wide,
aes(x = pressure, y = wind_speed)) +

geom_point() +
labs(x = "Pressure",

y = "Wind speed")
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Exercise 3: Joining Data Practice
Scenario: You have two datasets - one with student information and another
with their enrollment details. You need to be able to identify the names of
students taking stats courses.
# Create the datasets
students <- tribble(
~student_id, ~name, ~age,
"S001", "Alice Johnson", 20,
"S002", "Bob Smith", 22,
"S003", "Carol Davis", 19,
"S004", "David Wilson", 21,
"S005", "Eva Brown", 23

)

enrollments <- tribble(
~stdt_identifier, ~course, ~credits,
"S001", "Statistics", 3,
"S001", "Biology", 4,
"S002", "Statistics", 3,
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"S003", "Chemistry", 4,
"S004", "Statistics", 3,
"S004", "Physics", 4,
"S006", "Math", 3

)

students

# A tibble: 5 x 3
student_id name age
<chr> <chr> <dbl>

1 S001 Alice Johnson 20
2 S002 Bob Smith 22
3 S003 Carol Davis 19
4 S004 David Wilson 21
5 S005 Eva Brown 23
enrollments

# A tibble: 7 x 3
stdt_identifier course credits
<chr> <chr> <dbl>

1 S001 Statistics 3
2 S001 Biology 4
3 S002 Statistics 3
4 S003 Chemistry 4
5 S004 Statistics 3
6 S004 Physics 4
7 S006 Math 3

How I did it:
combined_data <- students |>
left_join(enrollments, by = join_by(student_id == stdt_identifier)) # Keep all students, match different column names

combined_data # View the combined data

# A tibble: 7 x 5
student_id name age course credits
<chr> <chr> <dbl> <chr> <dbl>

1 S001 Alice Johnson 20 Statistics 3
2 S001 Alice Johnson 20 Biology 4
3 S002 Bob Smith 22 Statistics 3
4 S003 Carol Davis 19 Chemistry 4
5 S004 David Wilson 21 Statistics 3
6 S004 David Wilson 21 Physics 4
7 S005 Eva Brown 23 <NA> NA
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statistics_students <- combined_data |>
filter(course == "Statistics") |> # Keep only rows where course equals "Statistics"
select(name, course) # Keep only the name and course columns

statistics_students # View the result

# A tibble: 3 x 2
name course
<chr> <chr>

1 Alice Johnson Statistics
2 Bob Smith Statistics
3 David Wilson Statistics

Exercise 4: Sharks!
Scenario: You have swimming data from beachgoers and bull shark detection
data from acoustic telemetry during fourth of July. The swimming data tell you
when someone entered and left the water. The shark detection data tells you
which sharks were detected within the acoustic array in front of the beach, and
the time of detection. Who was in the water while a shark was nearby?8

# Create the datasets
swimming_data <- tribble(
~name, ~swim_start, ~swim_end,
"Alice", "2024-07-04 10:30:00", "2024-07-04 11:15:00",
"Bob", "2024-07-04 10:45:00", "2024-07-04 11:30:00",
"Carol", "2024-07-04 11:00:00", "2024-07-04 11:45:00",
"David", "2024-07-04 11:20:00", "2024-07-04 12:00:00",
"Eva", "2024-07-04 12:10:00", "2024-07-04 12:45:00"

) |>
mutate(swim_start = as_datetime(swim_start),

swim_end = as_datetime(swim_end))

shark_detections <- tribble(
~shark_id, ~detection_time,
"SH001", "2024-07-04 09:40:00",
"SH002", "2024-07-04 11:25:00",
"SH003", "2024-07-04 11:35:00"

) |>
mutate(detection_time = as_datetime(detection_time))

swimming_data

# A tibble: 5 x 3
8Hint: Look at the documentation for join_by(). What does it say about “Overlap

helpers”? You’ll want to use the between() function.
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name swim_start swim_end
<chr> <dttm> <dttm>

1 Alice 2024-07-04 10:30:00 2024-07-04 11:15:00
2 Bob 2024-07-04 10:45:00 2024-07-04 11:30:00
3 Carol 2024-07-04 11:00:00 2024-07-04 11:45:00
4 David 2024-07-04 11:20:00 2024-07-04 12:00:00
5 Eva 2024-07-04 12:10:00 2024-07-04 12:45:00
shark_detections

# A tibble: 3 x 2
shark_id detection_time
<chr> <dttm>

1 SH001 2024-07-04 09:40:00
2 SH002 2024-07-04 11:25:00
3 SH003 2024-07-04 11:35:00

How I did it:
swimmer_shark_overlap <- shark_detections |>
inner_join(swimming_data, # Note that I am using an inner join. Play with inner, left, and right to see what happens

by = join_by(between(detection_time, swim_start, swim_end))) # Find swimmers in water during shark detections

swimmer_shark_overlap # View all the overlap data

# A tibble: 5 x 5
shark_id detection_time name swim_start swim_end
<chr> <dttm> <chr> <dttm> <dttm>

1 SH002 2024-07-04 11:25:00 Bob 2024-07-04 10:45:00 2024-07-04 11:30:00
2 SH002 2024-07-04 11:25:00 Carol 2024-07-04 11:00:00 2024-07-04 11:45:00
3 SH002 2024-07-04 11:25:00 David 2024-07-04 11:20:00 2024-07-04 12:00:00
4 SH003 2024-07-04 11:35:00 Carol 2024-07-04 11:00:00 2024-07-04 11:45:00
5 SH003 2024-07-04 11:35:00 David 2024-07-04 11:20:00 2024-07-04 12:00:00
at_risk_swimmers <- swimmer_shark_overlap |>
group_by(name) |> # Keep only the columns we want to see
summarize(n_sharks_near = n_distinct(shark_id))

at_risk_swimmers # These swimmers were in the water when sharks were detected

# A tibble: 3 x 2
name n_sharks_near
<chr> <int>

1 Bob 1
2 Carol 2
3 David 2
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