
Coding Principles Exercises

Juan Carlos Villaseñor-Derbez (JC)

Exercise 1: Object Classes and Assignment
Part A: Set up

1. Open R Studio and navigate to your EVR628 project
2. Set up a code snippet for a header

##
title
##
#
Your Name Here
Your email here
date
#
Description
#
##

3. Create a new R script and save it as objects_and_classes.R
4. Use your new code snippet to add the header

Part B: Create and Check Object Classes
In your R Script, create objects of different classes and check their types:

1. A character object called my_name with your name
2. A numeric object called my_age with your age (or any number, it doesn’t

have to be your age)
3. A logical object called is_student with TRUE or FALSE
4. Check the class of each object using class()

my_name <- "JC" # character object called `my_name` with your name
my_age <- 32 # numeric object called `my_age` with your age
is_student <- FALSE # logical object called `is_student` with TRUE or FALSE

Check the class of each object using `class()`
class(my_name)

1

[1] "character"
class(my_age)

[1] "numeric"
class(is_student)

[1] "logical"

Part C: Object Coercion
Let’s see what happens when you try converting objects. In the R script, write
and then execute code that will:

1. Convert your age to character using as.character(my_age)
2. Convert TRUE to numeric using as.numeric()
3. Try to convert "hello" to numeric - what happens?
4. Advanced: Use |> to build a code pipeline to:

a. Take your age
b. Convert it to character
c. Get it’s class

Note that I am overwriting the object. If I had only done `as.character(my_age)`,
then the coerced output would have been printed to the console.
my_age <- as.character(my_age) # Convert your age to `character`
Check that iw worked
class(my_age)

[1] "character"
as.numeric(TRUE) # Convert `TRUE` to numeric using `as.numeric()`

[1] 1
as.numeric("hello") # Try to convert `"hello"` to `numeric` - what happens?

Warning: NAs introduced by coercion

[1] NA
Build a pipeline
my_age <- 32 # Start with my_age as numeric again
ANd now build the pipeline
my_age |>

as.character() |>
class()

[1] "character"

2

Exercise 2: Vectors and Operations
Part A: Create and Manipulate Vectors

1. Clean you environment (use the broom icon)
2. Create a numeric vector called length_m with values: 6, 4.1, 2.8, 5.5, 3.9,

5.8
3. Create a character vector called shark_species with: Great White Shark,

Lemon Shark, Bull Shark, Hammerhead Shark, Mako Shark, and Great
White Shark (yes, white shark again)

4. How many variables do you have in your environment?
5. How many length observations do we have? Find the length of both vectors

using length()
6. How many unique species do we have? (Hint, use |> to build a pipeline)
7. Calculate the mean length of all sharks using mean()
8. Find the maximum length using max()

Q2
length_m <- c(6, 4.1, 2.8, 5.5, 3.9, 5.8)
Q3
shark_species <- c("Great White Shark", "Lemon Shark", "Bull Shark",

"Hammerhead Shark", "Mako Shark", "Great White Shark")
Q5
length(length_m)

[1] 6
Q6
shark_species |>

unique() |>
length()

[1] 5
Q7
mean(x = length_m)

[1] 4.683333
Q8
max(length_m)

[1] 6

Important

• When passing arguments to functions, use = not <-
• When creating objects, use <- not =

3

Part B: Vector Operations and Indexing
1. Extract the first 3 shark species using indexing with [] and save them to

an object called first_3
2. Extract shark species where maximum length is greater than 4 meters
3. Assuming the values in length_m and sharks_species are ordered so that

they match each other, find the shark species that is the largest
4. Calculate the mean length for all great white sharks

Q1
first_3 <- shark_species[1:3] # Extract values 1 through 3 and assign them
first_3 # See the values I assigned

[1] "Great White Shark" "Lemon Shark" "Bull Shark"
Q2
shark_species[length_m > 4] #Extract shark species where maximum length is greater than 4 meters

[1] "Great White Shark" "Lemon Shark" "Hammerhead Shark"
[4] "Great White Shark"
Q3
shark_species[length_m == max(length_m)]

[1] "Great White Shark"
Q4 (Option 1, no pipes)
Read as : "Calculate the mean of lengths where shark species matches Great White Shark
mean(length_m[shark_species == "Great White Shark"])

[1] 5.9
Q4 (Option 2, with pipe)
length_m[shark_species == "Great White Shark"] |> # Read as: Extract lengths where name matches great white shark AND THEN ...

mean() # Calculate the mean

[1] 5.9

Likely pause here

Exercise 3: Data Frames and Tibbles
Part A: Estimate the effect of a Marine Protected Area on
Biomass

1. Install and load an updated version of EVR628tools:

4

remotes::install_github("jcvdav/EVR628tools")

2. Start a new script called MPA_analysis, add a comment outline and then
load the EVR628tools and tidyverse packages.

3. Load and inspect the new ?data_MPA

a. What are the dimensions of the data?
b. What are the column names?
c. How many unique() sites are there?
d. How many unique() years?
e. Visualize the trends in biomass through time and across sites

4. Create four objects containing:

a. Mean biomass inside the MPA before it was protected
b. Mean biomass inside the MPA after it was protected
c. Mean biomass outside the MPA before the MPA was created
d. Mean biomass outside the MPA after the MPA was created

Hint: Use a combination of subsetting ([]), relational (==), and logical opera-
tors (&)

5. Then, calculate:
a. Change after vs before for the protected site
b. Change after vs before for the unprotected site

6. Finally, calculate the difference between these two values. This is called
the naive difference-in-differences estimate. You are calculating the dif-
ferences across treatments and across time. See Villasenor-Derbez et al.
(2018) and Lynham and Villaseñor-Derbez (2024) for details.

My code will be here

5

Exercise 4: Code Style and Documentation
Part A: Fix Code Style
Fix the style issues in this code:
mydataframe=data.frame(species=c("Great White","Tiger", "Bull"),
length=c(4.5,3.2, NA))
mean(mydataframe$length,na.rm=TRUE)

My improved code will be here

Note: What’s with than na.rm = TRUE?

Part B: Add Comments and Section Headers
1. Add meaningful comments to your R script

Lynham, John, and Juan Carlos Villaseñor-Derbez. 2024. “Evidence of Spillover
Benefits from Large-Scale Marine Protected Areas to Purse Seine Fisheries.”
Science 386 (6727): 1276–81.

Villasenor-Derbez, Juan Carlos, Caio Faro, Melaina Wright, Jael Martinez, Sean
Fitzgerald, Stuart Fulton, Maria del Mar Mancha-Cisneros, et al. 2018.
“A User-Friendly Tool to Evaluate the Effectiveness of No-Take Marine Re-
serves.” PLoS One 13 (1): e0191821.

6

	Exercise 1: Object Classes and Assignment
	Part A: Set up
	Part B: Create and Check Object Classes
	Part C: Object Coercion

	Exercise 2: Vectors and Operations
	Part A: Create and Manipulate Vectors
	Part B: Vector Operations and Indexing

	Exercise 3: Data Frames and Tibbles
	Part A: Estimate the effect of a Marine Protected Area on Biomass

	Exercise 4: Code Style and Documentation
	Part A: Fix Code Style
	Part B: Add Comments and Section Headers

